1. Katsi V, Papakonstantinou I, Tsioufis K. Atherosclerosis, Diabetes Mellitus, and Cancer: Common Epidemiology, Shared Mechanisms, and Future Management. Int J Mol Sci. 2023 Jul 22;24(14):11786. https://doi.org/10.3390/ijms241411786
2. Sedighi M, Bahmani M, Asgary S, Beyranvand F, Rafieian-Kopaei M. A review of plant-based compounds and medicinal plants effective on atherosclerosis. J Res Med Sci. 2017 Mar 15;22:30. https://doi.org/10.4103/1735-1995.202151
3. Sun Z. Atherosclerosis and atheroma plaque rupture: normal anatomy of vasa vasorum and their role associated with atherosclerosis. ScientificWorldJournal. 2014 Mar 20;2014:285058. https://doi.org/10.1155/2014/285058
4. Nguyen HH, Nguyen NH, Nguyen TTT. Anti-atherosclerotic effects of Camellia chrysantha and Gynostemma pentaphyllum extracts mixture. J Herbmed Pharmacol. 2023;12(4):492-9. https://doi.org/10.34172/jhp.2023.44843
5. Dudekula JB, Koilpillai J, Narayanasamy D. Guggulsterone phytosomes: A novel approach to alleviate hyperlipidemia in high-fat diet-fed rats. J Herbmed Pharmacol. 2024;13(1):80-9. https://doi.org/10.34172/jhp.2024.48111
6. Giral P, Pithois-Merli I, Filitti V, Levenson J, Plainfosse MC, Mainardi C, et al. Risk factors and early extracoronary atherosclerotic plaques detected by three-site ultrasound imaging in hypercholesterolemic men. Prévention Cardio-vasculaire en Médecine du Travail METRA Group. Arch Intern Med. 1991 May;151(5):950-6.
7. Khoury Z, Schwartz R, Gottlieb S, Chenzbraun A, Stern S, Keren A. Relation of coronary artery disease to atherosclerotic disease in the aorta, carotid, and femoral arteries evaluated by ultrasound. Am J Cardiol. 1997 Dec 1;80(11):1429-33. https://doi.org/10.1016/s0002-9149(97)00701-7
8. Peters SA, Huxley RR, Woodward M. Diabetes as a risk factor for stroke in women compared with men: a systematic review and meta-analysis of 64 cohorts, including 775,385 individuals and 12,539 strokes. Lancet. 2014 Jun 7;383(9933):1973-80. https://doi.org/10.1016/s0140-6736(14)60040-4
9. Tabit CE, Shenouda SM, Holbrook M, Fetterman JL, Kiani S, Frame AA, et al. Protein kinase C-β contributes to impaired endothelial insulin signaling in humans with diabetes mellitus. Circulation. 2013 Jan 1;127(1):86-95. https://doi.org/10.1161/circulationaha.112.127514
10. Katakami N. Mechanism of Development of Atherosclerosis and Cardiovascular Disease in Diabetes Mellitus. J Atheroscler Thromb. 2018 Jan 1;25(1):27-39. https://doi.org/10.5551/jat.rv17014
11. Khan MI, Pichna BA, Shi Y, Bowes AJ, Werstuck GH. Evidence supporting a role for endoplasmic reticulum stress in the development of atherosclerosis in a hyperglycaemic mouse model. Antioxid Redox Signal. 2009 Sep;11(9):2289-98. https://doi.org/10.1089/ars.2009.2569
12. Saghafian Larijani S, Biglari Abhari M, Mirfakhraee H, Niksolat M, Aminpanah D. Evaluation of the relationship between preeclampsia and positive rectovaginal culture of group B Streptococcus and Helicobacter pylori positive serology. Immunopathol Persa. 2025;11(1):e21. https://doi.org/10.34172/ipp.2022.21
13. Zeadin MG, Petlura CI, Werstuck GH. Molecular mechanisms linking diabetes to the accelerated development of atherosclerosis. Can J Diabetes. 2013 Oct;37(5):345-50. https://doi.org/10.1016/j.jcjd.2013.06.001
14. Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN. The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. Int J Mol Sci. 2020 Mar 6;21(5):1835. https://doi.org/10.3390/ijms21051835
15. Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK, et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes. 2009 May;58(5):1229-36. https://doi.org/10.2337/db08-1666
16. Friedlander AH, Maeder LA. The prevalence of calcified carotid artery atheromas on the panoramic radiographs of patients with type 2 diabetes mellitus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000 Apr;89(4):420-4. https://doi.org/10.1016/s1079-2104(00)70122-3
17. Kadoglou NP, Stasinopoulou M, Velidakis N, Khattab E, Christodoulou E, Gkougkoudi E, et al. The Complex Mechanisms and the Potential Effects of Statins on Vascular Calcification: A Narrative Review. Rev Cardiovasc Med. 2024 Jan 30;25(2):51. https://doi.org/10.31083/j.rcm2502051
19. Khan AW, Jandeleit-Dahm KAM. Atherosclerosis in diabetes mellitus: novel mechanisms and mechanism-based therapeutic approaches. Nat Rev Cardiol. 2025 Jul;22(7):482-96. https://doi.org/10.1038/s41569-024-01115-w
20. Bahramnezhad F, Navab E, Navid Hamidi M, Mehrnezhad N. A review of the role of diabetes in the development of atherosclerosis. Iran J Cardiovasc Nurs. 2014;3(2):64-9.
21. Miaffo D, Kolefer K, Dadaya E, Maidadi B, Mahamad AT, Kamanyi A. Globimetula braunii prevents hyperglycemia, oxidative damage, and hepatorenal dysfunction in dexamethasone-induced insulin-resistant rats. J Herbmed Pharmacol. 2024;14(1):43-52. https://doi.org/10.34172/jhp.2025.52546
22. Widowati W, Tjokropranoto R, Wahyudianingsih R, Tih F, Martioso PS, Dani D, et al. Antioxidant and inhibitory activities of α-amylase, α-glucosidase, and G6Pase from Smallanthus sonchifolius tuber extract as a potential antidiabetic agent. J Herbmed Pharmacol. 2024;14(1):53-62. https://doi.org/10.34172/jhp.2025.52551
23. Hosseini SH, Zorab MM, Zarei MA. Antioxidant, antibacterial, and α-glucosidase inhibition potential of three Allium species (Amaryllidaceae) from Iran. J Herbmed Pharmacol. 2024;13(4):674-84. https://doi.org/10.34172/jhp.2024.52634
24. Selvin E, Coresh J, Golden SH, Boland LL, Brancati FL, Steffes MW, et al. Glycemic control, atherosclerosis, and risk factors for cardiovascular disease in individuals with diabetes: the atherosclerosis risk in communities study. Diabetes Care. 2005 Aug;28(8):1965-73. https://doi.org/10.2337/diacare.28.8.1965
25. Jun JE, Choi YJ, Lee Y-H, Kim DJ, Park SW, Huh BW, et al. ApoB/ApoA-I ratio is independently associated with carotid atherosclerosis in type 2 diabetes mellitus with well-controlled LDL cholesterol levels. Korean J Intern Med. 2018 Jan;33(1):138-47. https://doi.org/10.3904/kjim.2017.396
26. Gray SP, Di Marco E, Okabe J, Szyndralewiez C, Heitz F, Montezano AC, et al. NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis. Circulation. 2013 May 7;127(18):1888-902. https://doi.org/10.1161/circulationaha.112.132159
27. Takaidza S, Ssemakalu CC, Chukwuneme CF, Pillay M. Immunomodulatory effects of crude acetone and water leaf extracts from Tulbaghia violacea on RAW264. 7 cells stimulated with lipopolysaccharide (LPS). J Herbmed Pharmacol. 2025;14(2):217-29. https://doi.org/10.34172/jhp.2025.52690
28. Kim Y, Lee S, Choi Y-A, Chung J-M, Kim E-N, Lee B, et al. Magnolia kobus DC leaf ethanol extract alleviated lipopolysaccharide-induced acute lung inflammation by suppressing NF-κB and Nrf2 signaling. J Herbmed Pharmacol. 2024;13(1):90-100. https://doi.org/10.34172/jhp.2024.48116
29. Kouémou NE, Savo FM, Pale S, Noubissi AP, Dongmo SMN, Taiwe GS, et al. Anxiolytic, memory improvement, hepatoprotective, and antioxidant effects of Thymus vulgaris on alcohol withdrawal syndrome in mice. J Herbmed Pharmacol. 2024;13(4):572-86. https://doi.org/10.34172/jhp.2024.51455
30. Cushnie B, Jaruchotikamol A, Laihakhot J, Chotson A. In vitro antiglycation and antioxidant properties of ethanolic extracts of Ficus botryocarpa and Ficus racemosa fruits. J Herbmed Pharmacol. 2024;13(3):472-81. https://doi.org/10.34172/jhp.2024.51498
31. Phimarn W, Taengthonglang C, Sungthong B. Efficacy and safety of Coccinia grandis (L.) Voigt on blood glucose and lipid profile: An updated systematic review and meta-analysis. J Herbmed Pharmacol. 2024;13(3):342-52. https://doi.org/10.34172/jhp.2024.49331
32. Dahl-Jørgensen K, Larsen JR, Hanssen KF. Atherosclerosis in childhood and adolescent type 1 diabetes: early disease, early treatment? Diabetologia. 2005 Aug;48(8):1445-53. https://doi.org/10.1007/s00125-005-1832-1
33. Summerhill VI, Grechko AV, Yet SF, Sobenin IA, Orekhov AN. The Atherogenic Role of Circulating Modified Lipids in Atherosclerosis. Int J Mol Sci. 2019 Jul 20;20(14):3561. https://doi.org/10.3390/ijms20143561
35. Cromwell WC, Otvos JD. Heterogeneity of low-density lipoprotein particle number in patients with type 2 diabetes mellitus and low-density lipoprotein cholesterol <100 mg/dl. Am J Cardiol. 2006 Dec 15;98(12):1599-602. https://doi.org/10.1016/j.amjcard.2006.07.036
37. Fryirs MA, Barter PJ, Appavoo M, Tuch BE, Tabet F, Heather AK, et al. Effects of high-density lipoproteins on pancreatic beta-cell insulin secretion. Arterioscler Thromb Vasc Biol. 2010 Aug;30(8):1642-8. https://doi.org/10.1161/atvbaha.110.207373
39. Barlovic DP, Soro-Paavonen A, Jandeleit-Dahm KA. RAGE biology, atherosclerosis and diabetes. Clin Sci (Lond). 2011 Jul;121(2):43-55. https://doi.org/10.1042/cs20100501
40. Ginsberg HN. REVIEW: Efficacy and mechanisms of action of statins in the treatment of diabetic dyslipidemia. J Clin Endocrinol Metab. 2006 Feb;91(2):383-92. https://doi.org/10.1210/jc.2005-2084
41. Zhang XG, Zhang YQ, Zhao DK, Wu JX, Zhao J, Jiao XM, Chen B, Lv XF. Relationship between blood glucose fluctuation and macrovascular endothelial dysfunction in type 2 diabetic patients with coronary heart disease. Eur Rev Med Pharmacol Sci. 2014;18(23):3593-600.
42. Aho K. Studies of syphilitic antibodies. IV. Evidence of reactant partner common for C-reactive protein and certain anti-lipoidal antibodies. Br J Vener Dis. 1969 Mar;45(1):13-8. https://doi.org/10.1136/sti.45.1.13
43. Tsujimoto M, Inoue K, Nojima S. C-reactive protein induced agglutination of lipid suspensions prepared in the presence and absence of phosphatidylcholine. The Journal of Biochemistry. 1980;87(5):1531-7.
44. Tabuchi M, Inoue K, Usui-Kataoka H, Kobayashi K, Teramoto M, Takasugi K, et al. The association of C-reactive protein with an oxidative metabolite of LDL and its implication in atherosclerosis. J Lipid Res. 2007 Apr;48(4):768-81. https://doi.org/10.1194/jlr.m600414-jlr200
45. Sedigheh A, Jamal MS, Mahbubeh S, Somayeh K, Mahmoud R, Azadeh A, et al. Hypoglycaemic and hypolipidemic effects of pumpkin (Cucurbita pepo L.) on alloxan-induced diabetic rats. Afr J Pharm Pharmacol. 2011;5(23):2620-6. https://doi.org/10.5897/AJPP11.635
46. Tratrat C, Ali L, Asif A, Khan S, Haroun M, Sewell RD. Hepatoprotective activity of Artocarpus lakoocha leaf extract against paracetamol-induced hepatotoxicity. J Herbmed Pharmacol. 2025;14(2):250-8. https://doi.org/10.34172/jhp.2025.52899
47. McAteer MA, Akhtar AM, von Zur Muhlen C, Choudhury RP. An approach to molecular imaging of atherosclerosis, thrombosis, and vascular inflammation using microparticles of iron oxide. Atherosclerosis. 2010 Mar;209(1):18-27. https://doi.org/10.1016/j.atherosclerosis.2009.10.009
48. Folsom AR, Wu KK, Rasmussen M, Chambless LE, Aleksic N, Nieto FJ. Determinants of population changes in fibrinogen and factor VII over 6 years: the Atherosclerosis Risk in Communities (ARIC) Study. Arterioscler Thromb Vasc Biol. 2000 Feb;20(2):601-6. https://doi.org/10.1161/01.atv.20.2.601
50. Ghassibe-Sabbagh M, Platt DE, Youhanna S, Abchee AB, Stewart K, Badro DA, et al. Genetic and environmental influences on total plasma homocysteine and its role in coronary artery disease risk. Atherosclerosis. 2012 May;222(1):180-6. https://doi.org/10.1016/j.atherosclerosis.2012.02.035
51. Yuan D, Chu J, Lin H, Zhu G, Qian J, Yu Y, et al. Mechanism of homocysteine-mediated endothelial injury and its consequences for atherosclerosis. Front Cardiovasc Med. 2023 Jan 16;9:1109445. https://doi.org/10.3389/fcvm.2022.1109445
55. Chen S, Swier VJ, Boosani CS, Radwan MM, Agrawal DK. Vitamin D Deficiency Accelerates Coronary Artery Disease Progression in Swine. Arterioscler Thromb Vasc Biol. 2016 Aug;36(8):1651-9. https://doi.org/10.1161/atvbaha.116.307586
56. Herder C, Dalmas E, Böni-Schnetzler M, Donath MY. The IL-1 Pathway in Type 2 Diabetes and Cardiovascular Complications. Trends Endocrinol Metab. 2015 Oct;26(10):551-63. https://doi.org/10.1016/j.tem.2015.08.001
57. Lu X, Tan Q, Ma J, Zhang J, Yu P. Emerging Role of LncRNA Regulation for NLRP3 Inflammasome in Diabetes Complications. Front Cell Dev Biol. 2022 Jan 12;9:792401. https://doi.org/10.3389/fcell.2021.792401
58. Tseng HH, Vong CT, Kwan YW, Lee SM, Hoi MP. TRPM2 regulates TXNIP-mediated NLRP3 inflammasome activation via interaction with p47 phox under high glucose in human monocytic cells. Sci Rep. 2016 Oct 12;6:35016. https://doi.org/10.1038/srep35016
59. Wang S, Fang F, Jin WB, Wang X, Zheng XS. Investigation into the association between NLRP3 gene polymorphisms and susceptibility to type 2 diabetes mellitus. Genet Mol Res. 2015 Dec 21;14(4):17447-52. https://doi.org/10.4238/2015.december.21.15
60. Lee J, Wan J, Lee L, Peng C, Xie H, Lee C. Study of the NLRP3 inflammasome component genes and downstream cytokines in patients with type 2 diabetes mellitus with carotid atherosclerosis. Lipids Health Dis. 2017 Nov 18;16(1):217. https://doi.org/10.1186/s12944-017-0595-2
61. Kita T, Kume N, Minami M, Hayashida K, Murayama T, Sano H, Moriwaki H, Kataoka H, Nishi E, Horiuchi H, Arai H, Yokode M. Role of oxidized LDL in atherosclerosis. Ann N Y Acad Sci. 2001 Dec;947:199-205. https://doi.org/10.1111/j.1749-6632.2001.tb03941.x
62. Wang S, Xie X, Lei T, Zhang K, Lai B, Zhang Z, et al. Statins Attenuate Activation of the NLRP3 Inflammasome by Oxidized LDL or TNFα in Vascular Endothelial Cells through a PXR-Dependent Mechanism. Mol Pharmacol. 2017 Sep;92(3):256-64. https://doi.org/10.1124/mol.116.108100
63. Huang D, Gao W, Zhong X, Ge J. NLRP3 activation in endothelia promotes development of diabetes-associated atherosclerosis. Aging (Albany NY). 2020 Sep 23;12(18):18181-91. https://doi.org/10.18632/aging.103666
64. Koka S, Xia M, Chen Y, Bhat OM, Yuan X, Boini KM, et al. Endothelial NLRP3 inflammasome activation and arterial neointima formation associated with acid sphingomyelinase during hypercholesterolemia. Redox Biol. 2017 Oct;13:336-44. https://doi.org/10.1016/j.redox.2017.06.004
66. Iyer SS, He Q, Janczy JR, Elliott EI, Zhong Z, Olivier AK, et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity. 2013 Aug 22;39(2):311-23. https://doi.org/10.1016/j.immuni.2013.08.001
68. Kose M, Senkal N, Tukek T, Cebeci T, Atalar SC, Altinkaynak M, et al. Severe vitamin D deficiency is associated with endothelial inflammation in healthy individuals even in the absence of subclinical atherosclerosis. Eur Rev Med Pharmacol Sci. 2022 Oct;26(19):7046-52. https://doi.org/10.26355/eurrev_202210_29888
69. Kheiri B, Abdalla A, Osman M, Ahmed S, Hassan M, Bachuwa G. Vitamin D deficiency and risk of cardiovascular diseases: a narrative review. Clin Hypertens. 2018 Jun 22;24:9. https://doi.org/10.1186/s40885-018-0094-4
70. Alfieri DF, Lehmann MF, Oliveira SR, Flauzino T, Delongui F, de Araújo MCM, et al. Vitamin D deficiency is associated with acute ischemic stroke, C-reactive protein, and short-term outcome. Metab Brain Dis. 2017 Apr;32(2):493-502. https://doi.org/10.1007/s11011-016-9939-2
71. Cesari M, Incalzi RA, Zamboni V, Pahor M. Vitamin D hormone: a multitude of actions potentially influencing the physical function decline in older persons. Geriatr Gerontol Int. 2011 Apr;11(2):133-42. https://doi.org/10.1111/j.1447-0594.2010.00668.x
72. Del Valle HB, Yaktine AL, Taylor CL, Ross AC. Dietary reference intakes for calcium and vitamin D. 2011.
74. Cheru LT, Saylor CF, Fitch KV, Looby SE, Lu M, Hoffmann U, et al. Low vitamin D is associated with coronary atherosclerosis in women with HIV. Antivir Ther. 2019;24(7):505-12. https://doi.org/10.3851/imp3336
76. Saedeghi H, Sadeghi N, Raziani Y, Annaiah Sridhar K, Ghasemian Yadegari J, Nabi Moradi M. Ameliorating effects of Astragalus maximus methanolic extract on inflammation and oxidative stress in streptozotocin-induced diabetic rats. J Herbmed Pharmacol. 2023;12(3):413-8. https://doi.org/10.34172/jhp.2023.45
77. Yu MA, Sánchez-Lozada LG, Johnson RJ, Kang DH. Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J Hypertens. 2010 Jun;28(6):1234-42.
78. Matsuoka T-a, Kajimoto Y, Watada H, Kaneto H, Kishimoto M, Umayahara Y, et al. Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells. J Clin Invest. 1997 Jan 1;99(1):144-50. https://doi.org/10.1172/jci119126
79. Chaudhary K, Malhotra K, Sowers J, Aroor A. Uric Acid - key ingredient in the recipe for cardiorenal metabolic syndrome. Cardiorenal Med. 2013 Oct;3(3):208-20. https://doi.org/10.1159/000355405
80. Maahs DM, Caramori L, Cherney DZ, Galecki AT, Gao C, Jalal D, et al. Uric acid lowering to prevent kidney function loss in diabetes: the preventing early renal function loss (PERL) allopurinol study. Curr Diab Rep. 2013 Aug;13(4):550-9. https://doi.org/10.1007/s11892-013-0381-0
81. Bönhof GJ, Herder C, Strom A, Papanas N, Roden M, Ziegler D. Emerging Biomarkers, Tools, and Treatments for Diabetic Polyneuropathy. Endocr Rev. 2019 Feb 1;40(1):153-92. https://doi.org/10.1210/er.2018-00107
82. Mazzali M, Hughes J, Kim Y-G, Jefferson JA, Kang D-H, Gordon KL, et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension. 2001 Nov;38(5):1101-6. https://doi.org/10.1161/hy1101.092839
83. Filiopoulos V, Hadjiyannakos D, Vlassopoulos D. New insights into uric acid effects on the progression and prognosis of chronic kidney disease. Ren Fail. 2012;34(4):510-20. https://doi.org/10.3109/0886022x.2011.653753
84. Cicerchi C, Li N, Kratzer J, Garcia G, Roncal-Jimenez CA, Tanabe K, et al. Uric acid-dependent inhibition of AMP kinase induces hepatic glucose production in diabetes and starvation: evolutionary implications of the uricase loss in hominids. FASEB J. 2014 Aug;28(8):3339-50. https://doi.org/10.1096/fj.13-243634
85. Shi M, Zhang X, Wang H. The Prevalence of Diabetes, Prediabetes and Associated Risk Factors in Hangzhou, Zhejiang Province: A Community-Based Cross-Sectional Study. Diabetes Metab Syndr Obes. 2022 Mar 3;15:713-21. https://doi.org/10.2147/dmso.s351218
86. Zhao M, Lin H, Yuan Y, Wang F, Xi Y, Wen LM, et al. Prevalence of Pre-Diabetes and Its Associated Risk Factors in Rural Areas of Ningbo, China. Int J Environ Res Public Health. 2016 Aug 10;13(8):808. https://doi.org/10.3390/ijerph13080808
88. Tajiri Y, Möller C, Grill V. Long-term effects of aminoguanidine on insulin release and biosynthesis: evidence that the formation of advanced glycosylation end products inhibits B cell function. Endocrinology. 1997 Jan;138(1):273-80. https://doi.org/10.1210/endo.138.1.4851
89. Burger F, Baptista D, Roth A, da Silva RF, Montecucco F, Mach F, et al. NLRP3 Inflammasome Activation Controls Vascular Smooth Muscle Cells Phenotypic Switch in Atherosclerosis. Int J Mol Sci. 2021 Dec 29;23(1):340. https://doi.org/10.3390/ijms23010340
90. Gogulamudi VR, Durrant JR, Adeyemo AO, Ho HM, Walker AE, Lesniewski LA. Advancing age increases the size and severity of spontaneous atheromas in mouse models of atherosclerosis. Geroscience. 2023 Jun;45(3):1913-31. https://doi.org/10.1007/s11357-023-00776-8
91. Sano S, Oshima K, Wang Y, Katanasaka Y, Sano M, Walsh K. CRISPR-Mediated Gene Editing to Assess the Roles of Tet2 and Dnmt3a in Clonal Hematopoiesis and Cardiovascular Disease. Circ Res. 2018 Jul 20;123(3):335-41. https://doi.org/10.1161/circresaha.118.313225
92. Du W, Wong C, Song Y, Shen H, Mori D, Rotllan N, et al. Age-associated vascular inflammation promotes monocytosis during atherogenesis. Aging Cell. 2016 Aug;15(4):766-77. https://doi.org/10.1111/acel.12488
93. Yu EP, Reinhold J, Yu H, Starks L, Uryga AK, Foote K, et al. Mitochondrial Respiration Is Reduced in Atherosclerosis, Promoting Necrotic Core Formation and Reducing Relative Fibrous Cap Thickness. Arterioscler Thromb Vasc Biol. 2017 Dec;37(12):2322-32. https://doi.org/10.1161/atvbaha.117.310042
94. Swiader A, Nahapetyan H, Faccini J, D’Angelo R, Mucher E, Elbaz M, et al. Mitophagy acts as a safeguard mechanism against human vascular smooth muscle cell apoptosis induced by atherogenic lipids. Oncotarget. 2016 May 17;7(20):28821-35. https://doi.org/10.18632/oncotarget.8936
95. Mussbacher M, Schossleitner K, Kral-Pointner JB, Salzmann M, Schrammel A, Schmid JA. More than Just a Monolayer: the Multifaceted Role of Endothelial Cells in the Pathophysiology of Atherosclerosis. Curr Atheroscler Rep. 2022 Jun;24(6):483-92. https://doi.org/10.1007/s11883-022-01023-9
96. Jiang J, Gan Z, Li Y, Zhao W, Li H, Zheng JP, Ke Y. REM sleep deprivation induces endothelial dysfunction and hypertension in middle-aged rats: Roles of the eNOS/NO/cGMP pathway and supplementation with L-arginine. PLoS One. 2017 Aug 15;12(8):e0182746. https://doi.org/10.1371/journal.pone.0182746
97. Młynarska E, Czarnik W, Fularski P, Hajdys J, Majchrowicz G, Stabrawa M, Rysz J, Franczyk B. From Atherosclerotic Plaque to Myocardial Infarction—The Leading Cause of Coronary Artery Occlusion. Int J Mol Sci. 2024 Jul 2;25(13):7295. https://doi.org/10.3390/ijms25137295
98. Gencer S, Döring Y, Jansen Y, Bayasgalan S, Yan Y, Bianchini M, et al. Endothelial ACKR3 drives atherosclerosis by promoting immune cell adhesion to vascular endothelium. Basic Res Cardiol. 2022 Jun 8;117(1):30. https://doi.org/10.1007/s00395-022-00937-4
99. Liu H, Wang X, Gao H, Yang C, Xie C. Physiological and pathological characteristics of vascular endothelial injury in diabetes and the regulatory mechanism of autophagy. Front Endocrinol (Lausanne). 2023 Jun 27;14:1191426. https://doi.org/10.3389/fendo.2023.1191426
100. Rimessi A, Previati M, Nigro F, Wieckowski MR, Pinton P. Mitochondrial reactive oxygen species and inflammation: Molecular mechanisms, diseases and promising therapies. Int J Biochem Cell Biol. 2016 Dec;81(Pt B):281-93. https://doi.org/10.1016/j.biocel.2016.06.015
101. Barlow J, Jensen VH, Jastroch M, Affourtit C. Palmitate-induced impairment of glucose-stimulated insulin secretion precedes mitochondrial dysfunction in mouse pancreatic islets. Biochem J. 2016 Feb 15;473(4):487-96. https://doi.org/10.1042/bj20151080
102. Adepoju AE, Ntwasa M, Lebelo SL, Oyedepo TA, Ayeleso AO. Effects of hydroethanolic garlic extract on oxidative stress, lipolysis, and glycogenesis in high-fat diet-fed Drosophila melanogaster. J Herbmed Pharmacol. 2024;13(2):216-25. https://doi.org/10.34172/jhp.2024.46051
104. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004 Dec;114(12):1752-61. https://doi.org/10.1172/jci21625
106. Cheng HS, Sivachandran N, Lau A, Boudreau E, Zhao JL, Baltimore D, et al. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol Med. 2013 Jul;5(7):1017-34. https://doi.org/10.1002/emmm.201202318
108. Chen W, Li X, Wang J, Song N, Zhu A, Jia L. miR-378a Modulates Macrophage Phagocytosis and Differentiation through Targeting CD47-SIRPα Axis in Atherosclerosis. Scand J Immunol. 2019 Jul;90(1):e12766. https://doi.org/10.1111/sji.12766
109. Das S, Reddy MA, Senapati P, Stapleton K, Lanting L, Wang M, et al. Diabetes Mellitus-Induced Long Noncoding RNA Dnm3os Regulates Macrophage Functions and Inflammation via Nuclear Mechanisms. Arterioscler Thromb Vasc Biol. 2018 Aug;38(8):1806-20. https://doi.org/10.1161/atvbaha.117.310663
110. Newton AC. Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem J. 2003 Mar 1;370(Pt 2):361-71. https://doi.org/10.1042/bj20021626
111. Nishikawa T, Edelstein D, Du XL, Yamagishi S-i, Matsumura T, Kaneda Y, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000 Apr 13;404(6779):787-90. https://doi.org/10.1038/35008121
112. Lien CF, Chen SJ, Tsai MC, Lin CS. Potential Role of Protein Kinase C in the Pathophysiology of Diabetes-Associated Atherosclerosis. Front Pharmacol. 2021 Jul 2;12:716332.
114. Dimitrievska S, Gui L, Weyers A, Lin T, Cai C, Wu W, et al. New Functional Tools for Antithrombogenic Activity Assessment of Live Surface Glycocalyx. Arterioscler Thromb Vasc Biol. 2016 Sep;36(9):1847-53. https://doi.org/10.1161/atvbaha.116.308023
115. Sharma P, Dong Y, Somers VK, Peterson TE, Zhang Y, Wang S, et al. Intermittent hypoxia regulates vasoactive molecules and alters insulin-signaling in vascular endothelial cells. Sci Rep. 2018 Sep 20;8(1):14110. https://doi.org/10.1038/s41598-018-32490-3
116. Horio E, Kadomatsu T, Miyata K, Arai Y, Hosokawa K, Doi Y, et al. Role of endothelial cell-derived angptl2 in vascular inflammation leading to endothelial dysfunction and atherosclerosis progression. Arterioscler Thromb Vasc Biol. 2014 Apr;34(4):790-800. https://doi.org/10.1161/atvbaha.113.303116
117. Bobryshev YV, Ivanova EA, Chistiakov DA, Nikiforov NG, Orekhov AN. Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis. Biomed Res Int. 2016;2016:9582430. https://doi.org/10.1155/2016/9582430
118. Wang B, Tang X, Yao L, Wang Y, Chen Z, Li M, et al. Disruption of USP9X in macrophages promotes foam cell formation and atherosclerosis. J Clin Invest. 2022 May 16;132(10):e154217. https://doi.org/10.1172/jci154217
119. Daiber A, Xia N, Steven S, Oelze M, Hanf A, Kröller-Schön S, et al. New Therapeutic Implications of Endothelial Nitric Oxide Synthase (eNOS) Function/Dysfunction in Cardiovascular Disease. Int J Mol Sci. 2019 Jan 7;20(1):187. https://doi.org/10.3390/ijms20010187
120. de Yébenes VG, Briones AM, Martos-Folgado I, Mur SM, Oller J, Bilal F, et al. Aging-Associated miR-217 Aggravates Atherosclerosis and Promotes Cardiovascular Dysfunction. Arterioscler Thromb Vasc Biol. 2020 Oct;40(10):2408-24. https://doi.org/10.1161/atvbaha.120.314333
125. Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation. 2000 Sep 12;102(11):1296-301. https://doi.org/10.1161/01.cir.102.11.1296
126. Yamauchi T, Kamon J, Waki H, Imai Y, Shimozawa N, Hioki K, et al. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem. 2003 Jan 24;278(4):2461-8. https://doi.org/10.1074/jbc.m209033200
130. Arya A, Kumar S, Kain D, Vandana V, Mikawlrawng K. Metabolite profiling, antioxidant, antibacterial, and carbohydrate hydrolyzing enzyme inhibition activities of Drymaria cordata. J Herbmed Pharmacol. 2024;13(3):407-19. https://doi.org/10.34172/jhp.2024.48085
131. Bahmani M, Mirhoseini M, Shirzad H, Sedighi M, Shahinfard N, Rafieian-Kopaei M. A review on promising natural agents effective on hyperlipidemia. J Evid Based Complementary Altern Med. 2015 Jul;20(3):228-38. https://doi.org/10.1177/2156587214568457
132. Afridi HI, Kazi TG, Kazi N, Baig JA, Jamali MK, Arain MB, et al. Status of essential trace metals in biological samples of diabetic mother and their neonates. Arch Gynecol Obstet. 2009 Sep;280(3):415-23. https://doi.org/10.1007/s00404-009-0955-x
134. Chen Y-C, Bui AV, Diesch J, Manasseh R, Hausding C, Rivera J, et al. A novel mouse model of atherosclerotic plaque instability for drug testing and mechanistic/therapeutic discoveries using gene and microRNA expression profiling. Circ Res. 2013 Jul 19;113(3):252-65. https://doi.org/10.1161/circresaha.113.301562
135. Huang T, Ren J, Huang J, Li D. Association of homocysteine with type 2 diabetes: a meta-analysis implementing Mendelian randomization approach. BMC Genomics. 2013 Dec 10;14:867. https://doi.org/10.1186/1471-2164-14-867
136. Diakoumopoulou E, Tentolouris N, Kirlaki E, Perrea D, Kitsou E, Psallas M, et al. Plasma homocysteine levels in patients with type 2 diabetes in a Mediterranean population: relation with nutritional and other factors. Nutr Metab Cardiovasc Dis. 2005 Apr;15(2):109-17. https://doi.org/10.1016/j.numecd.2004.01.001
137. Russo G, Di Benedetto A, Alessi E, Giandalia A, Gaudio A, Ientile R, et al. Menopause modulates homocysteine levels in diabetic and non-diabetic women. J Endocrinol Invest. 2008 Jun;31(6):546-51. https://doi.org/10.1007/bf03346406
138. Scullion SM, Gurgul-Convey E, Elsner M, Lenzen S, Flatt PR, McClenaghan NH. Enhancement of homocysteine toxicity to insulin-secreting BRIN-BD11 cells in combination with alloxan. J Endocrinol. 2012 Aug;214(2):233-8. https://doi.org/10.1530/joe-11-0461
139. Emoto M, Kanda H, Shoji T, Kawagishi T, Komatsu M, Mori K, et al. Impact of insulin resistance and nephropathy on homocysteine in type 2 diabetes. Diabetes Care. 2001 Mar;24(3):533-8. https://doi.org/10.2337/diacare.24.3.533
140. Yu J, Nagasu H, Murakami T, Hoang H, Broderick L, Hoffman HM, et al. Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy. Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15514-9. https://doi.org/10.1073/pnas.1414859111
141. Zhong Z, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S, Wong J, et al. NF-κB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria. Cell. 2016 Feb 25;164(5):896-910. https://doi.org/10.1016/j.cell.2015.12.057
142. Sazonova MA, Sinyov VV, Ryzhkova AI, Galitsyna EV, Khasanova ZB, Postnov AY, et al. Role of Mitochondrial Genome Mutations in Pathogenesis of Carotid Atherosclerosis. Oxid Med Cell Longev. 2017;2017:6934394. https://doi.org/10.1155/2017/6934394
143. A Sobenin I, V Zhelankin A, Y Mitrofanov K, V Sinyov V, A Sazonova M, Y Postnov A, et al. Mutations of mitochondrial DNA in atherosclerosis and atherosclerosis-related diseases. Curr Pharm Des. 2015;21(9):1158-63. https://doi.org/10.2174/1381612820666141013133000
144. Sobenin IA, Sazonova MA, Postnov AY, Salonen JT, Bobryshev YV, Orekhov AN. Association of mitochondrial genetic variation with carotid atherosclerosis. PLoS One. 2013 Jul 9;8(7):e68070. https://doi.org/10.1371/journal.pone.0068070
145. Poznyak AV, Wu W-K, Melnichenko AA, Wetzker R, Sukhorukov V, Markin AM, et al. Signaling Pathways and Key Genes Involved in Regulation of foam Cell Formation in Atherosclerosis. Cells. 2020 Mar 1;9(3):584. https://doi.org/10.3390/cells9030584
146. Orekhov AN, Nikiforov NG, Elizova NV, Korobov GA, Aladinskaya AV, Sobenin IA, et al. Tumor Necrosis Factor-α and C-C Motif Chemokine Ligand 18 Associate with Atherosclerotic Lipid Accumulation In situ and In vitro. Curr Pharm Des. 2018;24(24):2883-9. https://doi.org/10.2174/1381612824666180911120726
147. Meyer A, Laverny G, Bernardi L, Charles AL, Alsaleh G, Pottecher J, et al. Mitochondria: An Organelle of Bacterial Origin Controlling Inflammation. Front Immunol. 2018 Apr 19;9:536. https://doi.org/10.3389/fimmu.2018.00536
148. Casas A, Mallén A, Blasco-Lucas A, Sbraga F, Guiteras J, Bolaños N, et al. Chronic Kidney Disease-Associated Inflammation Increases the Risks of Acute Kidney Injury and Mortality after Cardiac Surgery. Int J Mol Sci. 2020 Dec 18;21(24):9689. https://doi.org/10.3390/ijms21249689
149. Surdu A, Pinzariu O, Ciobanu D, Negru A, Cainap S, Lazea C, et al. Vitamin D and Its Role in the Lipid Metabolism and the Development of Atherosclerosis. Biomedicines. 2021 Feb 9;9(2):172. https://doi.org/10.3390/biomedicines9020172
150. Lee AY, Kim JK, Kang JH, Yu BY, Kim SJ. Relationship between coronary atherosclerosis in coronary computed tomography angiography and serum vitamin D level. Osteoporos Sarcopenia. 2017 Sep;3(3):155-8. https://doi.org/10.1016/j.afos.2017.08.100
151. Ramakrishnegowda A, Suresh S, Elumalai R, Ravi H, Ramanathan G. Association of AT1R (A1166C) gene polymorphisms and hypertension: a study in south Indian population and meta-analysis. J Renal Inj Prev. 2024; 13(4): e32197. https://doi.org/10.34172/jrip.2024.32197
152. Vasu S, Kumano K, Darden CM, Rahman I, Lawrence MC, Naziruddin B. MicroRNA Signatures as Future Biomarkers for Diagnosis of Diabetes States. Cells. 2019 Nov 28;8(12):1533. https://doi.org/10.3390/cells8121533
153. Barutta F, Bellini S, Mastrocola R, Bruno G, Gruden G. MicroRNA and Microvascular Complications of Diabetes. Int J Endocrinol. 2018 Mar 7;2018:6890501. https://doi.org/10.1155/2018/6890501
154. Harja E, Chang JS, Lu Y, Leitges M, Zou YS, Schmidt AM, et al. Mice deficient in PKCbeta and apolipoprotein E display decreased atherosclerosis. FASEB J. 2009 Apr;23(4):1081-91. https://doi.org/10.1096/fj.08-120345
155. Kong L, Shen X, Lin L, Leitges M, Rosario R, Zou YS, et al. PKCβ promotes vascular inflammation and acceleration of atherosclerosis in diabetic ApoE null mice. Arterioscler Thromb Vasc Biol. 2013 Aug;33(8):1779-87. https://doi.org/10.1161/atvbaha.112.301113
156. Kotozaki Y, Satoh M, Nasu T, Tanno K, Tanaka F, Sasaki M. Human Plasma Xanthine Oxidoreductase Activity in Cardiovascular Disease: Evidence from a Population-Based Study. Biomedicines. 2023 Mar 1;11(3):754. https://doi.org/10.3390/biomedicines11030754
158. Sánchez-Lozada LG, Lanaspa MA, Cristóbal-García M, García-Arroyo F, Soto V, Cruz-Robles D, et al. Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations. Nephron Exp Nephrol. 2012;121(3-4):e71-8. https://doi.org/10.1159/000345509
159. Verzola D, Ratto E, Villaggio B, Parodi EL, Pontremoli R, Garibotto G, et al. Uric acid promotes apoptosis in human proximal tubule cells by oxidative stress and the activation of NADPH oxidase NOX 4. PLoS One. 2014 Dec 16;9(12):e115210. https://doi.org/10.1371/journal.pone.0115210
160. Yan M, Chen K, He L, Li S, Huang D, Li J. Uric Acid Induces Cardiomyocyte Apoptosis via Activation of Calpain-1 and Endoplasmic Reticulum Stress. Cell Physiol Biochem. 2018;45(5):2122-35. https://doi.org/10.1159/000488048
162. Qu K, Yan F, Qin X, Zhang K, He W, Dong M, et al. Mitochondrial dysfunction in vascular endothelial cells and its role in atherosclerosis. Front Physiol. 2022 Dec 20;13:1084604. https://doi.org/10.3389/fphys.2022.1084604
164. Teuscher AU, Reinli K, Teuscher A; SENECA Investigators. (Survey in Europe on Nutrition and the Elderly, a Concerted Action). Glycaemia and insulinaemia in elderly European subjects (70-75 years). Diabet Med. 2001 Feb;18(2):150-3. https://doi.org/10.1046/j.1464-5491.2001.00434.x
165. Basta G, Schmidt AM, De Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 2004 Sep 1;63(4):582-92. https://doi.org/10.1016/j.cardiores.2004.05.001
166. Wendt T, Bucciarelli L, Qu W, Lu Y, Yan SF, Stern DM, et al. Receptor for advanced glycation endproducts (RAGE) and vascular inflammation: insights into the pathogenesis of macrovascular complications in diabetes. Curr Atheroscler Rep. 2002 May;4(3):228-37. https://doi.org/10.1007/s11883-002-0024-4
167. Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl). 2005 Nov;83(11):876-86. https://doi.org/10.1007/s00109-005-0688-7
168. Gross-Fengels W, Imig H, Schulenburg B. Interdisciplinary vascular center: a method for consequential process optimization in the hospital. Rofo. 2001 May;173(5):387-90. https://doi.org/10.1055/s-2001-13347
169. Hadi HA, Carr CS, Al Suwaidi J. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag. 2005;1(3):183-98.
170. Young IS, Trouton TG, Torney JJ, McMaster D, Callender ME, Trimble ER. Antioxidant status and lipid peroxidation in hereditary haemochromatosis. Free Radic Biol Med. 1994 Mar;16(3):393-7. https://doi.org/10.1016/0891-5849(94)90041-8
171. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev. 2002 Oct;23(5):599-622. https://doi.org/10.1210/er.2001-0039
174. Abel ED, Doenst T. Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy. Cardiovasc Res. 2011 May 1;90(2):234-42. https://doi.org/10.1093/cvr/cvr015
176. Wasada T, Katsumori K, Watanabe C, Kawahara R, Iwamoto Y. Insulin sensitivity is inversely correlated with plasma cholesteryl ester transfer protein (CETP). Diabetologia. 1998;41(10):1251-2. https://doi.org/10.1007/s001250051061
177. DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991 Mar;14(3):173-94. https://doi.org/10.2337/diacare.14.3.173
181. Kzhyshkowska J, Gudima A, Moganti K, Gratchev A, Orekhov A. Perspectives for Monocyte/Macrophage-Based Diagnostics of Chronic Inflammation. Transfus Med Hemother. 2016 Mar;43(2):66-77. https://doi.org/10.1159/000444943
182. Liu Y, Wei M, Liu G, Song C, Yang M, Cao Z, et al. Silencing Protease-Activated Receptor-2 alleviates ox-LDL-induced lipid accumulation, inflammation and apoptosis via activation of Wnt/β-catenin signaling. Gen Physiol Biophys. 2020 Sep;39(5):437-48. https://doi.org/10.4149/gpb_2020014
183. Xie J, Pan T, Luo W, Zhang S, Fang Y, Xu Z. CYP2C19 *2/*2 Genotype is a Risk Factor for Multi-Site Arteriosclerosis: A Hospital-Based Cohort Study. Int J Gen Med. 2023 Nov 6;16:5139-46. https://doi.org/10.2147/ijgm.s437251
184. Wang ZC, Machuki JO, Li MZ, Li KX, Sun HJ. A narrative review of plant and herbal medicines for delaying diabetic atherosclerosis: an update and future perspectives. Rev Cardiovasc Med. 2021;22(4):1361-81. https://doi.org/10.31083/j.rcm2204142