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Abstract

Atherosclerosis, characterized by lipid accumulation in arterial walls, is a leading
cause of cardiovascular morbidity and mortality, with increased prevalence
among individuals with diabetes mellitus. Diabetes is a chronic condition marked
by persistently high blood glucose levels, a condition that can potentially result
in long-term complications, including heart, blood vessel, eye, kidney, and nerve
damage. Diabetes, marked by chronic hyperglycemia, contributes to atherogenesis
through mechanisms including endothelial dysfunction, oxidative stress, formation
of advanced glycation end-products (AGEs), and chronic inflammation. This
study provides a synopsis of the predominant characteristics of diabetes that
may potentially impact the atherogenic process, including oxidative stress,
altered protein kinase signaling, and the role of select microRNAs and epigenetic
modifications. This review comprehensively examines literature from 1969 to 2025,
focusing on the molecular and cellular pathways linking diabetes to atherosclerosis.
Effective glycemic control and management of associated risk factors remain pivotal
in mitigating atherosclerotic progression in diabetic patients. Understanding these
interconnected mechanisms is essential for developing targeted therapies to reduce
cardiovascular complications associated with diabetes.
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The interplay between diabetes and atherosclerosis

Introduction

Atherosclerosis is a significant risk factor for
cardiovascular diseases that impacts the arteries
by causing the buildup of fatty plaques and
narrowing of the blood vessels'-2. Atherosclerosis
is a multifactorial inflammatory disease that
ultimately results in atheroma formation. Even
though atheroma plaque formation has its
origins in childhood, the manifestations of this
condition typically occur during middle age and
after the age of 45. Atherosclerosis can result in
cerebrovascular accidents (CVA) and myocardial
infarctions (MI), contingent on the specific
location of the vascular involvement. The
significance of atherosclerotic plaque formation
is further elucidated when considering that up
to 80% of strokes are attributable to plaque
and are ischemic3®. Epidemiological research
has shown a clear relationship between specific
factors and atherosclerosis development, which
are coronary artery disease (CAD) risk factors,
including hypercholesterolemia, high blood
pressure, and diabetes®. It is well established
that oxidative stress, increased lipoproteins,
age, hyperhomocysteinemia, inflammatory
factors, genetics, smoking, cardiac ischemia,
atherogenic diet, free radicals in the blood, and
coronary artery disease (CAD) are all known
factors in atherosclerosis®®. Not exercising,
increased blood clotting, alcohol consumption,
obesity, and psychiatric disorders are also
known potential factors in the extension of
heart diseases. Atherosclerotic plaques are
more rampant in the thoracic aorta and femoral
arteries of patients with coronary artery disease.
Consequently, the degree of obstruction of
the aortic, carotid, and femoral arteries is of
paramount importance in determining the
severity of the condition®’. Strokes are generally
attributed to atherosclerosis in the carotid
arteries.

Diabetes is a costly chronic disease and a
significant predictor of atherosclerosis and
stroke®. High glucose levels mainly affect tissues
such as the liver, and the effects on the cells
of the atherosclerotic lesion are caused by
changing the signals of these tissues. An increase

in intracellular glucose leads to excessive
production of ROS. Additionally, hyperglycemia
can activate proinflammatory responses by
induction of protein kinase C and aldose
reductase®. Also, high glucose levels lead to the
formation of advanced glycation end-products.
They seem to play a role in atherosclerosis
expansion. Another function is LDL glycation,
which can be considered an atherogenic change
of LDL. AGE also inhibits reverse cholesterol
transport by decreasing ABCG1 and ABCA1l
expression, increasing vasoconstriction, and
decreasing vasodilation and nitric oxide. Lastly,
AGE promotes atherosclerotic lesions in diabetic
patients’®'2,  Accumulation of intracellular
ROS and advanced glycation end-products
in hyperglycemic patients is one of the most
prominent reasons for evaluating antioxidant
remedies against diabetes and atherosclerosis®.

Diabetes, or persistent hyperglycemia with
elevated inflammatory markers, is present in
the inner cells of the artery wall. In addition,
ample amounts of fat cells in these conditions
are faced with a disruption in the production
of insulin™. Hyperglycemia is related to several
genetic changes. These changes can affect the
genetic sequence of vascular endothelial cells.
Hyperglycemia induces epigenetic modifications
in endothelium, which are associated with
atherosclerosis development, thereby
establishing a link between atherosclerosis and
diabetes™.

Individuals with diabetes are at a greater risk
of developing carotid artery calcification than
those without diabetes. In these groups, the
frequency of calcification is significantly higher
than in the group of non-afflicted patients.
Furthermore, they are more susceptible
to atherosclerosis'®. Additionally, the data
obtained from a total of patients with diabetes
was analyzed in the group of four individuals.
A group of individuals demonstrated bilateral
calcification of the carotid arteries; calcification
of the right carotid artery was observed in one
group, while calcification of the left carotid
artery also was observed in another group”.

Diabetes mellitus represents approximately
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90-95% of all forms of diabetes, and in developing
countries, the population at risk of infection is
the greatest. This phenomenon indicates that
diabetes has become a significant public health
concern in numerous countries™®. One of the
causes of mortality in diabetic patients is vascular
accidents, which are largely attributable to the
phenomenon of atherosclerosis. Hence, special
attention is necessary regarding the relationship
between diabetes and atherosclerosis®. The
cardiovascular risk is multifaceted and involves
two primary components: adequate control
of blood glucose and the addressing of other
contributing risk factors. The prevailing clinical
practices prioritize the mitigation of risk factors,
including hyperglycemia, hyperlipidemia, and
hypertension. However, cardiovascularrisk factors
management cannot totally control development
and progression of atherosclerosis in diabetes™.
Furthermore, modifying atherosclerosis risk
factors through patient education and follow-
up can enhance the patient’s quality of life°.
Furthermore, plants with antioxidant activity have
been shown to reduce the complications of both
hyperglycemia and hyperlipidemia, indicating the
possible interplay between them?'-23.

This study provides a synopsis of the
predominant characteristics of diabetes
that may potentially impact the atherogenic
process. The investigation further explores
the connection between atherosclerosis and
diabetes mellitus, elucidating the potential
mechanistic underpinnings of this relationship.

Methods

For this review, relevant articles published
from 1961 to 2025 were collected from
scientific databases, including Google Scholar,
PubMed, SID, Web of Science, and Scopus. The
terms diabetes, coronary heart disease, and
atherosclerosis were used. Eligible articles were
then reviewed.

Results

Aspects Relating to the Diabetes-Atherosclerosis
Relationship

The leading cause of mortality in diabetic

patients is coronary artery disease?*2°, and

the rate is higher in women compared with
diabetic male patients?®. The factors involved
in atherosclerosis and diabetes are presented
below and summarised in Table 1. Their
mechanistic aspects are also depicted in Figures
1and 2.

Role of Nitric Oxide in Diabetes and
Atherosclerosis
The process of accelerated atherosclerosis in
diabetics is related to disruption of nitric oxide
production. Nitric oxide causes the blood to
properly flow into the vessels. Additionally, nitric
oxide protects against the reaction of platelets
and leukocytes with the blood vessel wall and
subsequent intravascular damage. Nitric oxide
also has immunomodulatory, anti-inflammatory,
and antioxidant activities? %°,

Indiabetes, nitricoxide levels decrease, and as
a result, the process of vasodilation is impaired.
The accumulation of platelets also increases. It
has been shown that under specific pathological
conditions, such as high cholesterol, eNOS is
impaired and that nitric oxide is produced in
place of the nitrite proxy. In atherosclerosis, we
see decreased eNOS expression3°,

The Role of LDL Lipoprotein in Diabetes and
Atherosclerosis

The results of studies conducted on diabetic
patients have demonstrated an elevated risk
and accelerated progression of atherosclerosis®'.
According to research, atherosclerosis can
develop at an earlier age in paediatric patients
with type | diabetes. Moreover, dyslipidaemia,
particularly increased LDL level, is a precipitating
atherogenic factor in addition to hyperglycaemia
and inflammatory responses32. The blood level of
small, dense LDL in diabetic patients is a proven
predictor of atherosclerosis progression33.
LDL is an independent determinant of CVD.
A moderate-intensity LDL for patients aged
40 to 75 years is important to evaluate their
diabetes34. LDL easily penetrates the artery wall,
oxidises, and causes atherosclerotic disease,
which is most common in diabetics®.
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Table 1. Factors Involved in Diabetes-Atherosclerosis and the Expression of Mechanistic Aspects

Mechanistic Contribution to

Factor Role in Diabetes . References
Atherosclerosis
AGE:s bind to their receptor
Formed through non- (RAGE), triggering gx1datlve
. . stress and inflammation. They
enzymatic glycation of S
. proteins and lipids under Promote cross linking of
Advanced Glycation End hyperalycemic conditions. collagen, leading to vascular (163-165)

Products (AGEs)

RAGE (Receptor for AGEs)

Oxidative Stress

Epigenetic Modifications

Inflammatory Cytokines

Insulin Resistance

Lipid Metabolism Disorders

AGEs accumulate in various
tissues and are elevated in
diabetic patients

A multi-ligand receptor that is
upregulated in diabetic
conditions. RAGE activation
petpetuates chronic
inflammation and cellular
stress.

Hyperglycemia impairs
endothelial nitric oxide (NO)
production, reducing
vasodilation and promoting a
pro-thrombotic state

Elevated glucose levels
increase the production of
reactive oxygen species (ROS),
overwhelming antioxidant
defenses.

Persistent hyperglycemia
induces epigenetic changes,
such as DNA methylation and
histone modifications, leading
to "metabolic memory."

Diabetes is associated with
increased levels of
inflammatory cytokines like
interleukin-6 (IL-6) and tumor
necrosis factor-alpha (TNF-«).

A hallmark of type 2 diabetes,
leading to impaired glucose
uptake and hyperinsulinemia.

Diabetes often leads to
elevated triglycerides and
decreased high-density
lipoprotein (HDL) cholesterol
levels.

stiffening, and enhance the
oxidation of low-density
lipoprotein (LDL),
contributing to plaque
formation.

RAGE activation leads to the
activation of nuclear factor
kappa B (NF-»B), promoting
the expression of pro-
inflammatory genes. This
contributes to endothelial
dysfunction, vascular
inflammation, and progression
of atherosclerotic lesions.
Endothelial dysfunction
increases vascular permeability
and facilitates the adhesion of
monocytes and LDL to the
endothelium, initiating
atherogenesis. It also
promotes vasoconstriction and
thrombosis.

ROS oxidize LDL particles,
which are then taken up by
macrophages to form foam
cells, a key component of
atherosclerotic plaques.
Oxidative stress also damages
endothelial cells, exacerbating
vascular injury.

These epigenetic alterations
sustain the expression of pro-
inflammatory and pro-
atherogenic genes even after
glycemic control is achieved,
contributing to ongoing
vascular damage.

These cytokines promote the
recruitment of immune cells to
the endothelium, enhancing
inflammation and plaque
instability in atherosclerosis
Insulin resistance contributes
to dyslipidemia and
endothelial dysfunction, both
of which are risk factors for
atherosclerosis.

Abnormal lipid profiles
accelerate the formation of
atherosclerotic plaques by
increasing the availability of
atherogenic lipoproteins.

(166-168)

(169, 170)

(171,172)

(173, 174)

(175, 176)

(177,178)

(179, 180)
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Table 1. Factors Involved in Diabetes-Atherosclerosis and the Expression of Mechanistic Aspects

Mechanistic Contribution to

Factor Role in Diabetes . References
Atherosclerosis
. Act i
Hyperglycemia and AGEs c@yated macrophages ingest
h oxidized LDL, transforming
Monocyte/Macrophage activate monocytes and .
.t . . into foam cells and (181, 182)
Activation macrophages, enhancing their o
. contributing to plaque
inflammatory tesponses. . .
formation and progression.
Genetic variations can affect
. . lipid metabolism,
Certain genetic .
olymorphisms increase inflammatory responses, and
Genetic Factors POl endothelial function, thereby (183, 184)

susceptibility to both diabetes
and atherosclerosis.

influencing the risk and
progression of atherosclerosis
in diabetic individuals.

AGEs (Advanced glycation end-products), RAGE (Reseptor Advanced glycation end-products), LDL (High Density Lipoprotein),
Nuclear factor kappa B (NF-xB), NO (Nitrogen Oxidative), ROS (Reactive Oxygen Species), inflammatory cytokines like intetleukin-

6 (IL-6), TNF-« (Tumor nectosis factor alpha),

Apo-A

Antiatherogenic

Antioxidants, Anti-inflammatory

inflammation
increase (LDL) oxidation
NLRP3-ASC Inflammasome Activation

Increased interleukin-1 and18

Coagulation factor-7

Increase of cause inflammation
Elevation of C-reactive protein or
CRP

7

Nitric oxide - (NO)

Increase Vitamin D
Decreased TNF-q, IL-6

Increace calcification

~—
Mechanisms of Diabetes
and Arteriosclerosis

Reduction of nitric oxide and increase,
of platelet aggregation in the blood
vessel wall

Increased nitric oxide leads to
increased peroxynitric acid

increase in Homocysteine

inflammation, Apoptosis, Increased
ROS, Reduction of NO

Figure 1. Association of Apo-A, Coagulation Factor-7, Nitric Oxide (NO), Vitamin D, Homocysteine, and Inflammation
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Uric acid-UA
increasing the production of ROS
and H202

Reduce insulin secretion, Increased
IL-6, TNF-a and CRP

Age increasing

Increased angiotensin type2

Lack of Tet2 gene expression

Endothelin-1-ET-1

Vasoconstrictor and secreter of
vascular endothelial cells

and plaque formation , Increased
cytokines IL-1,6

Increased mitophagy, Increase of
LDL, TG

Mechanisms of Diabetes
and Arteriosclerosis

Increased -PKC

Atherogenic growth
Reduction of NO
Increased cytokines

Increased inflammation,

ROS
Increase of ROS by inactivation of
NADPH

Inactivation of antioxidant enzymes

Vascular dysfunction mitophagy

Endothelial dysfunction

miRNA

miRNA increases with, Endothelial

growth, The most important
miRNAs are mir-126, 146, which
improve endothelial function

Figure 2. Association of Uric Acid (U), Age, ROS, miRNA, Endothelin-1 (ET-1), and Protein Kinase-C (PKC) with atherosclerosis and
diabetes patients

The Role of Apolipoprotein A in Diabetes and
Atherosclerosis

Apo A acts as an antioxidant component by
increasing antioxidant activity and preventing
oxidation. It is known for its anti-diabetic and anti-
inflammatory activity that prevents LDL changes
and lipoxygenase function. One study showed that
Apo A reduces vascular lipids and macrophages
and prevents atherosclerosis®®. The concentrations
of Apolipoprotein A-l and Apolipoprotein A-ll have
been demonstrated to increase beta-cell insulin
secretion and decrease plasma glucose levels. It
can be reasonably deduced that they may also
have a protective role in T2DM, as well as reducing
endothelial deposition and increasing HDL
levels®. Apolipoprotein A-l, the primary protein
constituent of high-density lipoproteins, has been
demonstrated to possess anti-diabetic properties.
It enhances insulin sensitivity and improves the
function of pancreatic beta cells. Apolipoprotein A-|

has also been shown to enhance insulin production
and secretion in response to hyperglycaemia,
indicating its therapeutic potential in diabetic
patients32.

The Role of Insulin Resistance in Diabetes and
Atherosclerosis

In diabetics, the entire clotting process is
disrupted. In patients with T2D, elevated
blood glucose levels are caused by insulin
resistance, and platelet adhesion to the vessel
wall increases. This is because the function of
insulin as a natural antagonist of platelets in the
body is disrupted®®. Insulin resistance has been
demonstrated to diminish VLDL clearance. It is
possible that this may have a lesser impact on
the elevation of triglycerides in this particular
condition. VLDL is metabolised to remnant
lipoproteins and LDL, both of which are strongly
associated with atherosclerosis. High LDL and

ARYA Atheroscler 2025; Volume 21; Issue 5; 60-82
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low HDL levels are observed in insulin resistance.
Additionally, higher levels of VLDL in diabetes
can impair HDL metabolism*°.

The Role of C-Reactive Protein in Diabetes and
Atherosclerosis

Fluctuations in blood glucose levels cause
inflammatory responses in patients with
T2D. These inflammatory responses are
accompanied by elevated levels of CRP and
cause vascular disease in diabetic patients,
which is prominent in atherosclerosis*'.
Additionally, preliminary evidence indicates a
potential correlation between CRP and lipids.
CRP has the capacity to coagulate fat and
lead to atherosclerosis*?. The capacity for fat
coagulation and interaction between CRP and
cholesterol®® is linked to the advancement of
atherosclerosis. Furthermore, the binding of
CRP to ox-LDL has been demonstrated in vivo
in diabetic patients with atherosclerosis*.
In a study conducted by Asgari et al.,, an
elevation in CRP was observed in alloxan-
induced diabetic rats relative to their untreated
counterparts. Additionally, this study revealed
that administration of cucurbita powder has
potential benefits in treating dyslipidaemia and
lowering CRP levels in rats*. Also, Artocarpus
lakoocha leaf extract has shown a reduction in
CRP and inflammation, as well as suppression
of acetaminophen-induced hepatotoxicity*®.

The Role of Coagulation Factor 7 in Diabetes and
Atherosclerosis

Studies show that factor 7, a clotting protein, is a
major contributor to thrombosis. It is related to
inflammatory parameters, asIL-6 and CRP in patients
with hypercholesterolaemia are high and suggest a
relationship in patients with atherosclerosis and
diabetes?. Folsom and colleagues studied the
long-term relationship between fibrinogen and
factor 7 in 440 men and 550 women at risk for
atherosclerotic disease. They reported that factor
7 in younger individuals, women, and patients who
were overweight and diabetic, as well as in patients
who had decreased plasma triacylglycerol, had a
greater increase during hormone therapy. Based on

the results of this long-term study, CVD risk factors
were related to elevated plasma levels of fibrinogen
and factor 7%,

The Role of Endothelin-1 in Diabetes and
Atherosclerosis

Endothelin factor 1 (ET1), which is a
vasoconstrictor secreted by endothelial cells,
vascular wall muscles, and inflammatory cells,
is responsible for the dysfunction of the
endothelium and small vessel disease.
Endothelin factor 1 level is higher in diabetic
patients compared to healthy individuals®.
Carotid artery calcification is also more common
in patients with T2D and atherosclerosis than in
healthy individuals®.

Endothelin-1 is a hallmark of endothelial dys-
function in diabetes, increasing vasoconstriction
and decreasing nitric oxide production, which is
crucial for vasodilation. The consequence of this
imbalance is diminished blood flow, which in turn
givesrise to microvascular complicationsincluding
retinopathy, nephropathy, and neuropathy?.
Homocysteine  Role in  Diabetes  and
Atherosclerosis
There is a relationship between coronary
artery disease and hyperhomocysteinemia.
Hyperhomocysteinemia and the formation of
homocysteine impair nitric oxide production and
increase oxidative stress. Reducing the level of
homocysteine is likely to be another treatment
goal for diabetes and atherosclerosis®®:>".

Elevated homocysteine levels have been
demonstrated to induce an increase in insulin
resistance and impairment of B-cell function,
which in turn can contribute to the development
of type 2 diabetes. This phenomenon is
attributable to the presence of oxidative stress
and inflammation, which are instigated by
elevatedlevelsof homocysteine**. Homocysteine
has been demonstrated to exert a deleterious
effect on endothelial cells by reducing nitric
oxide levels and inducing oxidative stress and
inflammatory response. These processes have
been shown to play a role in the initiation and
progression of atherosclerosis®*.
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Inflammation Role in Atherosclerosis and
Diabetes

Atherosclerosis is a major complication of
diabetes. It involves various pathogenic factors
including oxidative stress and endothelial
dysfunction®%.53, Hyperglycaemia and hyperlip-
idaemiaare associated with rapid atherosclerosis
development®*. Glycaemia and dyslipidaemia
may cause endothelial dysfunction®. In addition,
in type 2 diabetes patients, oxidative stress is
one of the main causes of insulin resistance. It
may also increase low-density lipoprotein (LDL)
oxidation. High levels of glucose and prolonged
oxidativestressleadtotheformationof Advanced
Glycation End Products. AGEs play a crucial role
in diabetes vascular complications through
receptor interactions (RAGEs). Oxidative stress
in the endothelium caused by hyperglycaemia
is associated with diabetes complications, which
can induce endothelial cell apoptosis, vascular
inflammation, and the promotion of endothelial
activation3®.

Diabetes enhances lipokinase and tumour
necrosis factor (TNF) release from adipose
tissues. IL-1B, one of the key inflammatory
mediators in diabetes pathogenesis, usually
promotes insulin resistance, disrupts islet cell
function, and leads to cell apoptosis. Excessive
expression of pro-inflammatory factors can
lead to complications of diabetes®. NLRP3
inflammasomeis associated with diabetes and its
complications®. Blood glucose usually activates
the NLRP3-ASC inflammasome, which activates
caspase-1 and induces IL-18 and IL-1B secretion
in monocyte cells®®. Wang et al. showed that
there was an association between NLRP3 gene
polymorphism and type 2 diabetes®®. NLRP3
and its downstream molecules are upregulated
in diabetes and atherosclerosis®®. NLRP3, IL-18,
and IL-1B play crucial roles in atherosclerosis
and are major atherosclerosis risk factors®'. Ox-
LDL also induces IL-1B macrophage secretion®?.
A high-fat diet or ox-LDL in endothelial cells
induces ROS production, activating the NLRP3
inflammasome and secreting IL-1B. This occurs
in patients with diabetes and atherosclerosis®3.
NLRP3 reduces the severity of atherosclerosis.

In addition, acute hypercholesterolaemia can
exacerbate endothelial dysfunction by NLRP3
inhibition®*.

In the inflammatory process, inflammatory
protein complexes enhance inflammatory
cytokine production and cell death when
encountered with pathogenicand harmful stimuli.
On the other hand, mitochondria play a role in
the initiation and regulation of inflammation®®.
Inflammatory activators release cardiolipin
and activate inflammation®®. Inflammation is
also associated with oxidative stress®’, which
aggregates diabetes and atherosclerosis.

Vitamin D Deficiency in Atherosclerosis and
Diabetes

Vitamin D deficiency leads to increased vascular
celladhesionmoleculesandselectinsresponsible
for the creation of atherosclerotic plaques
in these patients and in diabetics. However,
supplementation reduces triglycerides, total
cholesterol, and LDL, and increases HDL in
affected patients®®.

The process of atherosclerosis starts at
an earlier age in the presence of vitamin D
deficiency®®. Atherosclerosis, diabetes, and
coronary heart disease are slightly more likely in
individuals with adequate vitamin D”°.

Vitamin D can promote cardiovascular
health through its immunomodulatory, anti-
inflammatory, and antioxidant properties. More
studies need to be done due to the increased
rate of vitamin D deficiency and cardiovascular
events worldwide, and the potential role of
vitamin D in the process of atherosclerosis’"-’2.

According to research, hypertension,
dyslipidaemia, insulin resistance, and obesity
are accompanied by vitamin D deficiency
and can lead to atherosclerosis. Additionally,
subclinical markers of atherosclerosis, such
as increased carotid intima-media thickness
and coronary artery calcification, are seen in
vitamin D deficiency’. These findings suggest
that vitamin D plays an important role in the
pathogenesis of atherosclerosis’. On the
other hand, vitamin D or plants containing this
vitamin can suppress inflammatory mediators

ARYA Atheroscler 2025; Volume 21; Issue 5; 60-82

67



The interplay between diabetes and atherosclerosis

and improve management of diabetes and
atherosclerosis”7®,

Uric Acid Roles in Diabetes and Atherosclerosis
Increased production of reactive oxygen species
leads to inflammation and elevation of uric acid
(UA) and vascular disease?'. By increasing the
production of ROS such as H,0,, UA imposes pro-
oxidant effects in vascular tissue and vascular
damage, especially in diabetic and cardiac
patients such as those with atherosclerosis”’.
Oxidative stress can also affect insulin gene
expression and decrease insulin secretion’®,

Inflammation, by increasing uric acid (UA),
expresses interleukin 6, interleukin 1B, CRP,
and tumour necrosis factor a. Inflammation
activation by UA results in insulin resistance’.
Uric acid increases TNF-a levels and activates
the classical inflammatory pathway?®°.

Increased mitochondrial production caused
by inflammation, hyperglycaemia, ROS, and
endothelial dysfunction are chronic complication
features of diabetes®’. Renin—angiotensin—
aldosteroneactivationleadstorenin—angiotensin—
aldosterone system (RAAS) activation through
increased juxtaglomerular renin production®?,
UA-induced ROS increases angiotensin Il, which
causes the release of aldosterone and leads to
the activation of the RAAS’7:3, |n diabetes, RAAS
activation causes high intraglomerular pressure,
vascular dysfunction, and inflammation, which in
turn lead to cardiovascular diseases®.

The Role of Age in Diabetes and Atherosclerosis
Age is a major factor in the development of
diabetes and dyslipidaemia®. Patients with
type 2 diabetes typically have low HDL, elevated
TG, and increased levels of small and dense
LDL®, With aging, TG metabolism changes,
and its serum levels increase. This makes older
individuals more susceptible to cardiovascular
complications®”. Recruitment of immune cells
(T-cells and macrophages) and the activation
and cytotoxicity of beta cells increase apoptosis
or cell death in vascular cells associated with
diabetes®®. There is also a direct relationship
between old age and the risk of atherosclerosis®®.

Understanding the mechanisms of morbidity and
mortality associated with age in atherosclerotic
and diabetic patients may improve treatment in
these high-risk groups®°.

Several studies have linked Tet2 gene
expression with atherosclerosis. Lower Tet2
gene expression is associated with larger
atherosclerotic plaques®'. In addition, a lack
of Tet2 in macrophage cells derived from the
bone marrow leads to increased secretion of
inflammatory markers from smooth muscle cells.
Aging also contributes to the manufacture of
chemical absorbents, which increase the uptake
of myeloid cells into the arterial wall and cause
an increase in atherosclerosis. Vascular factors
like the effect of age on vascular bioenergetics,
mitophagy, and inflammation caused by
mitochondrial dysfunction in blood vessels
are examples that influence atherosclerosis®.
MtDNA damage can cause inflammation,
mitochondrial dysfunction, and apoptosis®3.%4.

Vascular Endothelial Changes in Diabetes and
Atherosclerosis

The function of the vascular endothelium is
to represent a dynamic boundary between
the circulation and the surrounding tissues.
These single-layered endothelial cells may act
as non-adhesive surfaces for leukocytes and
platelets, producing crucial regulatory factors
including nitric oxide and prostaglandins®®.
The accumulation of these substances
on the endothelial cells is called plaque.
Atherosclerotic plaque causes small vessel
narrowing and blood flow obstruction. Also,
the disintegration of plaques may cause blood
clots®~%8, Diabetes has been demonstrated
to induce endothelial dysfunction, typified by
impaired vasodilation, augmented oxidative
stress, and enhanced inflammation. This
impairment is attributable, at least in part,
to decreased nitric oxide production and
increased reactive oxygen species®®.

The Role of Oxidative Stress in Diabetes and
Atherosclerosis
In diabetes, elevated glucose levels are
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known to trigger a surge in the production of
reactive oxygen species, a phenomenon that
arises through several mechanisms including
glucose auto-oxidation and mitochondrial
dysfunction™®, ROS has been demonstrated
to damage cellular components, disrupt
insulin secretion, and contribute to beta cell
dysfunction™’. Additionally, oxidative stress can
lead to endothelial damage and atherosclerosis
progression in diabetic patients due to an
imbalance between antioxidants and reactive
oxygen species'0%.103,

Adipose tissues are major sources of ROS.
Visceral fat accumulation is upstream of ROS
production'™?, Atherosclerosis and diabetes
in metabolic syndrome are accompanied by
increased reactive oxygen species production in
adipose tissue, which has been associated with
increased NADPH oxidase expression. This is
also associated with the inactivation of catalase,
an antioxidant enzyme. Studies done on obese
mice showed that NADPH oxidase inhibitors can
reduce reactive oxygen species production in
adipose tissue. Moreover, several factors may
reduce active fat ROS in obesity'®>.

The Role of miRNA in diabetes and
atherosclerosis

miR-126 and miR-146 have gained attention
in atherosclerosis and diabetes; for example,
they are important indicators of endothelial
cell function'™® MicroRNAs have been
demonstrated to regulate endothelial function
and inflammation, which are recognised as
pivotal factors in the initiation and progression
of atherosclerosis. Forinstance, microRNA-126
modulates the expression of pro-inflammatory
cytokines and adhesion molecules'’. A great
diversity of miRNAs has been observed. For
example, another important miRNA, miR-
378a, plays asignificantroleinthe homeostasis
of hyperglycaemia and energy levels'®®,
According to studies, miRNA-378a hasarolein
the expansion of atherosclerosis. Researchers
showed that miRNA-378a targets SIRPa. As a
result, it regulates macrophage phagocytosis
and atherosclerosis progression®.

The Role of Dnm3os in Diabetes and
Atherosclerosis

The overexpression of DNM30S in macrophages
has been shown to result in enhanced
inflammation, which is thought to occur
as a consequence of alterations to global
histone modifications, in addition to increased
expression of immune response genes. This
molecule has been demonstrated to interact
with nucleolin and ILF-2, proteins that regulate
chromatin structure, resulting in increased
inflammatory gene expression'®. Another
non-coding RNA implicated in diabetes-related
atherosclerosis is Dnm3os, the reverse strand of
dynamin 3.

This RNA has been found in macrophages
of both mice and human diabetic cases. Its
overexpression leads to inflammation and
enhanced macrophage phagocytosis, causing
epigenetic chromatin modifications that further
exacerbate the inflammatory response in
diabetic patients with atherosclerosis'®*.

The Role of Protein Kinase C in Diabetes and
Atherosclerosis

Protein kinase C is an important kinase in
the signalling pathway"®, and diacylglycerol
is needed for its activation. The activation of
abnormal glucose and lipid metabolism has
been linked to altered vascular signalling, which
contributes to diabetic complications. For the
synthesis of diacylglycerol, increased glucose
absorption by vascular cells is necessary.
Increased activation of PKC may also trigger
the oxidative stress response™. Diabetic
animal models show increased vascular PKC
activation. Enhanced PKC signalling has several
atherogenic side effects™. It is well established
that specific PKC isoforms are associated with
various pathophysiological conditions, including
oxidative stress, inflammation, endothelial
dysfunction, and apoptosis of vascular smooth

muscle cells™?.

Immunological and Molecular Aspects of
Diabetes and Atherosclerosis
The process of diabetes and arteriosclerosis
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starts with a change in endothelial function and
structure. They produce a variety of chemokines
and cytokines, one of which is CXCL12, which
causes inflammation. Also, chemokine receptors
such as CXCR4 and ACKR3 have been considered
good targets for atherosclerosis therapy®s.
From a structural standpoint, the endothelial
glycocalyx is crucial as well. For instance, it has
a notable impact on anticoagulant mechanisms.
This structure, made up of proteoglycans and
extracellular matrix components, can have its
function diminished or impaired during the
inflammatory process""4,

Arteries and veins can regulate their
internal diameter through vasoconstriction
and vasodilatation, which are controlled by the
autonomic nervous system. These processes
help regulate blood flow to downstream organs
and body temperature. Blood vessels vary
greatly in size, from 25 mm for the aorta to 8
um for the capillaries. Vasoconstriction narrows
blood vessels by smooth muscle contraction
and is stimulated by vasoconstrictors such as
prostaglandins, vasopressin, angiotensin, and
epinephrine. Vasodilation, a similar process, is
mediated by nitric oxide*™". There is increasing
evidence that reduced intercellular junctions
lead to endothelial hyperpermeability"®.

MiRNAs have crucial roles in NO production
and endothelial cell growth. For example, miR-
217 is highly induced during endothelial cell
aging™®. This leads to decreased expression of
Sirtl. NO activates endothelial synthase. eNOS
produces NO and reduces atherosclerosis and
diabetes'®.

Inflammatory innate immune signalling
complexes are important modulators of the IL-1
cytokine family in atherosclerosis, contributing
to the inflammatory response and promoting
disease progression''.

NLRP3 and NLRP1 are also major components
of inflammation. These proteins are expressed in
macrophage cells and lead to apoptosis and the
formation of atherosclerotic plagues in patients.
In addition, hypoxia can suppress mMRNA
expression in macrophages with activation of
NLRP3. Activation of the NLRP3 inflammasome

recruits and activates caspase-1, which in turn
activates inflammatory mediators'?%.123,
Adipocyte-like adiponectin can help increase
plague stability and reduce proliferation
of smooth muscle cells in the endothelial
wall, thereby reducing the progression of
atherosclerosis'*'26,  QObservations  (AMP-
dependent  signalling  pathway, AMPK,
cyclooxygenase-2 dependent) support that
adiponectin represses plaque growth. For
example, cytokines such as TNF-a and IL-1
also activate monocytes and macrophages.
Macrophages can modify LDL by the process
of peroxidation; oxLDL has cytotoxic effects
on endothelial and mesangial cells and
causes central necrosis in the progenitors of
atherosclerotic plaques. In addition, oxLDL
promotes the release of cytokines produced
by endothelial cells and contributes to plaque

formation.

Discussion

This study assessed the relationship between
diabetes and atherosclerosis, which is a
predictor of coronary artery disease. It was
stated that in diabetes and its mechanisms, due
to the inflammatory process, lipid accumulation,
platelet adhesion, nitric oxide reduction, and
vasoconstriction, the process of atherosclerosis
intensifies.

There are different mechanisms playing
a role in the development of diabetes and
atherosclerosis, which can be classified as
preventable and non-preventable factors. Non-
preventable factors include age, gender, and
heredity. On the other hand, preventable factors
include diet, regular exercise, smoking cessation,
mental health, and controlling underlying
diseases like hypertension?2.12.

Detection of atherosclerosis can be done
through the assessment of total cholesterol,
LDL, HDL, triglycerides, blood pressure, exercise
testing, magnetic resonance imaging (MRA),
or angiography. There are chemical and herbal
treatments and antioxidants for managing
atherosclerosis in diabetic patients'°.131.

Research conducted by Afridiin 2009 showed
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that the plasma chromium of type 2 diabetics
was about 33% higher than that of controls.
They reported this increase to be up to 50%. The
amount of chromium in diabetics is higher than
in healthy populations™2.

Diabetic smokers are twice as likely to
develop atherosclerosis as  non-diabetic
smokers. The inhalation of hot cigarette smoke
results in an increase in core body temperature.
After that, the lungs lose their ability to undergo
physiological exchange, and as a result, damage
occurs to the thickness of the capillary intima.
Considering that in diabetics, the capillary intima
is already compromised, the damage caused
by cigarette smoke doubles, accelerating the
disease process. Research shows that capillary
damage occurs two years earlier in diabetic
smokers than in non-diabetic smokers™3.

Additionally, dyslipidaemia occurs through
the disruption of vasodilation and the reduction
of nitric oxide production, which is common in
diabetics and also raises blood pressure. On the
otherhand, thereduction of blood lipids prolongs
the presence and activity of NO inthe endothelial
wall, thereby promoting vasodilation. Studies by
Chen YC et al. (2013) showed the role of fatty
plagues in atherosclerosis and diabetes. ET-1
expression should be associated with endothelin
secretion in these diseases’?.

The majority of prior research has suggested
a relationship between hyperhomocysteine
levels and type 2 diabetes. Moreover, a recent
meta-analysis involving over 8,000 participants
strongly supported this relationship™>. Although
another study on Mediterranean patients found
no significant difference in homocysteine levels
betweendiabeticand non-diabeticindividuals'®,
the study by Russo et al. revealed no significant
difference in total homocysteine levels between
diabetic and non-diabetic women'¥’, suggesting
a potential gender effect on this relationship.

Furthermore, despite strong evidence
supporting a causal link between homocysteine
levels and the development of T2DM™5, it is
believed thatincreased homocysteine levels lead
to insulin resistance by reducing the secretory
response to insulin, which is due to increased

production of reactive oxygen species™?,
However, in diabetes, the liver accelerates
glucocorticoid secretion, leading to increased
homocysteine catabolism and a consequent
decrease in plasma homocysteine levels™®.

Defective mitochondria trigger an immune
response, especiallyindamagedcells,andrelease
mitochondrial DAMPs, causing the release of
inflammatory cytokines. Mitochondria can
initiate and regulate NLRP3 and inflammation®>.
An NLRP3 activator releases cardiolipin, causing
inflammation®®.'4%.'1 There is also a link
between atherosclerosis and mtDNA™2-'44 Thus,
the increase in intracellular lipid accumulation
occursin cytokine secretion'. Pro-inflammatory
responses in macrophages are activated by
the release of inflammatory cytokines through
the stimulation of phagocytosis by LDL™S.
Atherosclerotic lesions in arterial walls may have
a link to uncontrollable fat accumulation™’.

Defective mitophagy results in chronic
inflammation. Thus, inflammation can model
the development of atherosclerosis, which has
been shown to stem from chronic inflammation
caused by impaired mitophagy and modified
LDL™®,

Studies conducted on the mechanism of
vitamin D show that vitamin D decreases
inflammatory cytokines in monocytes. By
suppressing IL-6, it subsequently decreases the
synthesis of acute-phase CRP, which can lead
to atherosclerosis development®’. A porcine
study demonstrated that vitamin D increases
nuclear factor kB activation, imposing anti-
inflammatory activity'.

Vitamin D deficiency leads to oxidative stress,
increasing inflammation and atherosclerosis®®.
Vitamin D deficiency or supplementation has
been associated with heart attack, stroke, and
diabetes. Vitamin D deficiency increases CVD,
hypertension, and diabetes risks. Unfortunately,
the results regarding symptom relief in CVD are
not clear and require more research'™°'%.

Studies express the prospect of miRNA
associated with diabetes, atherosclerosis, and
heart disease. It is important to study miRNA
signals rather than individual miRNA types'2.
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Many miRNAs identified in humans are
implicated in the pathogenesis of diabetes
mellitus and microvascular complications'3.
miR-146 and miR-126 are mainly related to
atherosclerosis'®®.

The complexity of PKC-activated
intracellular signalling pathways makes it
important to recognise the precise atherogenic
mechanisms'™2. Increased activation of PKCB is
associated with atherosclerosis development,
and its inhibition decreases atherosclerotic
lesions™>,

Regarding uric acid, research in the Japanese
population has indicated that XO activity is an
important CVD biomarker. Additionally, XO
activity and the resultant production of uric
acid and ROS can impact microcirculation,
leading to tissue damage. This is also seen in
the early stages of chronic kidney disease, as
well as microartery dysfunction, hypertension,
diabetes, and atherosclerosis’®.'>".

Additionally, uric acid stimulates NADPH
oxidase, which results in the reduction of nitric
oxide and an increase in lipid oxidation'3,
Excessive production of reactive oxygen species
also diminishes nitric oxide availability, while
uric acid further restricts NO synthesis. Elevated
ROS levels and activated NADPH oxidase
contribute to mitochondrial damage, including
reduced mitochondrial function and ATP
production9.1¢°.

Research indicates a connection between
age, diabetes, and arteriosclerosis, revealing that
aging leads to increased aortic mitochondrial
dysfunction. IL-6 is also associated with vascular
mitochondrial dysfunction in a positive feedback
loop in the aorta. These age-related changes
aggravate vascular atherogenesis in acute
hyperlipidaemic states®®. Age and dyslipidaemia
are associated with prediabetes and diabetes®.

Endothelial glycocalyx hasaroleinendothelial
function. For instance, it has a substantial
impact on anticoagulant mechanisms. This
structure, which consists of extracellular matrix
and proteoglycan components, may experience
diminished or lost functionality during the
inflammatory process"14.

For vascular endothelial dysfunction
associated with atherosclerosis, the main
thing to consider is the activation of the
endothelium. Molecular activation in the form
of chemokine, cytokine, and adhesion molecule
expression interacts with platelets, leukocytes,
and other immune cells'®'. Increased ROS
production induces endothelial dysfunction
by activating pro-inflammatory and pro-
thrombotic pathways, leading to protein, lipid,
and nucleic acid oxidations. Mitochondrial
DNA is particularly vulnerable to ROS, resulting
in elevated ROS generation and apoptosis.
Disruption of mitochondrial function accelerates
atherosclerotic plague development'®?,

Conclusion

Atherosclerosis is caused by the production
of atheromatous plaque in the vessel walls.
Depending on the location of vessel involvement,
it is associated with heart attack and stroke.
Diabetes is one of the most common chronic
diseases and a risk factor for atherosclerosis
and stroke. One of the main causes of death
in this disease is vascular accidents, which
are essentially due to the phenomenon of
atherosclerosis. This article presented current
insights into the pathophysiological effects of
atherosclerosis and diabetes, with an emphasis
on endothelial dysfunction, aging, inflammatory
factors, and the roles of miRNA, uric acid,
ROS, nitric oxide, vitamin D, and elevated
homocysteine. It summarised recent evidence
on the interactions among these molecular and
cellular components.

Limitations

The most important limitations of the study can
be stated as follows: The studies referenced may
be subject to publication bias, where positive
findings are more likely to be published than
negative or inconclusive results, potentially
skewing the overall understanding of the topic.
Regarding the mechanistic aspects, while the
discussion touches on various mechanisms
linking diabetes and atherosclerosis, it does
not provide in-depth mechanistic studies
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or experimental data to substantiate these
pathways. Hence, further studies are needed
to provide deeper insights into the diabetes—
atherosclerosis link.
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