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Abstract
Atherosclerosis, characterized by lipid accumulation in arterial walls, is a leading 
cause of cardiovascular morbidity and mortality, with increased prevalence 
among individuals with diabetes mellitus. Diabetes is a chronic condition marked 
by persistently high blood glucose levels, a condition that can potentially result 
in long-term complications, including heart, blood vessel, eye, kidney, and nerve 
damage. Diabetes, marked by chronic hyperglycemia, contributes to atherogenesis 
through mechanisms including endothelial dysfunction, oxidative stress, formation 
of advanced glycation end-products (AGEs), and chronic inflammation. This 
study provides a synopsis of the predominant characteristics of diabetes that 
may potentially impact the atherogenic process, including oxidative stress, 
altered protein kinase signaling, and the role of select microRNAs and epigenetic 
modifications. This review comprehensively examines literature from 1969 to 2025, 
focusing on the molecular and cellular pathways linking diabetes to atherosclerosis. 
Effective glycemic control and management of associated risk factors remain pivotal 
in mitigating atherosclerotic progression in diabetic patients. Understanding these 
interconnected mechanisms is essential for developing targeted therapies to reduce 
cardiovascular complications associated with diabetes.
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Introduction
Atherosclerosis is a significant risk factor for 
cardiovascular diseases that impacts the arteries 
by causing the buildup of fatty plaques and 
narrowing of the blood vessels¹˒². Atherosclerosis 
is a multifactorial inflammatory disease that 
ultimately results in atheroma formation. Even 
though atheroma plaque formation has its 
origins in childhood, the manifestations of this 
condition typically occur during middle age and 
after the age of 45. Atherosclerosis can result in 
cerebrovascular accidents (CVA) and myocardial 
infarctions (MI), contingent on the specific 
location of the vascular involvement. The 
significance of atherosclerotic plaque formation 
is further elucidated when considering that up 
to 80% of strokes are attributable to plaque 
and are ischemic³. Epidemiological research 
has shown a clear relationship between specific 
factors and atherosclerosis development, which 
are coronary artery disease (CAD) risk factors, 
including hypercholesterolemia, high blood 
pressure, and diabetes⁴. It is well established 
that oxidative stress, increased lipoproteins, 
age, hyperhomocysteinemia, inflammatory 
factors, genetics, smoking, cardiac ischemia, 
atherogenic diet, free radicals in the blood, and 
coronary artery disease (CAD) are all known 
factors in atherosclerosis⁵˒⁶. Not exercising, 
increased blood clotting, alcohol consumption, 
obesity, and psychiatric disorders are also 
known potential factors in the extension of 
heart diseases. Atherosclerotic plaques are 
more rampant in the thoracic aorta and femoral 
arteries of patients with coronary artery disease. 
Consequently, the degree of obstruction of 
the aortic, carotid, and femoral arteries is of 
paramount importance in determining the 
severity of the condition⁶˒⁷. Strokes are generally 
attributed to atherosclerosis in the carotid 
arteries.

Diabetes is a costly chronic disease and a 
significant predictor of atherosclerosis and 
stroke⁸. High glucose levels mainly affect tissues 
such as the liver, and the effects on the cells 
of the atherosclerotic lesion are caused by 
changing the signals of these tissues. An increase 

in intracellular glucose leads to excessive 
production of ROS. Additionally, hyperglycemia 
can activate proinflammatory responses by 
induction of protein kinase C and aldose 
reductase⁹. Also, high glucose levels lead to the 
formation of advanced glycation end-products. 
They seem to play a role in atherosclerosis 
expansion. Another function is LDL glycation, 
which can be considered an atherogenic change 
of LDL. AGE also inhibits reverse cholesterol 
transport by decreasing ABCG1 and ABCA1 
expression, increasing vasoconstriction, and 
decreasing vasodilation and nitric oxide. Lastly, 
AGE promotes atherosclerotic lesions in diabetic 
patients¹⁰⁻¹². Accumulation of intracellular 
ROS and advanced glycation end-products 
in hyperglycemic patients is one of the most 
prominent reasons for evaluating antioxidant 
remedies against diabetes and atherosclerosis¹³. 

Diabetes, or persistent hyperglycemia with 
elevated inflammatory markers, is present in 
the inner cells of the artery wall. In addition, 
ample amounts of fat cells in these conditions 
are faced with a disruption in the production 
of insulin¹⁴. Hyperglycemia is related to several 
genetic changes. These changes can affect the 
genetic sequence of vascular endothelial cells. 
Hyperglycemia induces epigenetic modifications 
in endothelium, which are associated with 
atherosclerosis development, thereby 
establishing a link between atherosclerosis and 
diabetes¹⁵. 

Individuals with diabetes are at a greater risk 
of developing carotid artery calcification than 
those without diabetes. In these groups, the 
frequency of calcification is significantly higher 
than in the group of non-afflicted patients. 
Furthermore, they are more susceptible 
to atherosclerosis¹⁶. Additionally, the data 
obtained from a total of patients with diabetes 
was analyzed in the group of four individuals. 
A group of individuals demonstrated bilateral 
calcification of the carotid arteries; calcification 
of the right carotid artery was observed in one 
group, while calcification of the left carotid 
artery also was observed in another group¹⁷.

Diabetes mellitus represents approximately 
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90–95% of all forms of diabetes, and in developing 
countries, the population at risk of infection is 
the greatest. This phenomenon indicates that 
diabetes has become a significant public health 
concern in numerous countries¹⁸. One of the 
causes of mortality in diabetic patients is vascular 
accidents, which are largely attributable to the 
phenomenon of atherosclerosis. Hence, special 
attention is necessary regarding the relationship 
between diabetes and atherosclerosis⁸. The 
cardiovascular risk is multifaceted and involves 
two primary components: adequate control 
of blood glucose and the addressing of other 
contributing risk factors. The prevailing clinical 
practices prioritize the mitigation of risk factors, 
including hyperglycemia, hyperlipidemia, and 
hypertension. However, cardiovascular risk factors 
management cannot totally control development 
and progression of atherosclerosis in diabetes¹⁹. 
Furthermore, modifying atherosclerosis risk 
factors through patient education and follow-
up can enhance the patient’s quality of life²⁰. 
Furthermore, plants with antioxidant activity have 
been shown to reduce the complications of both 
hyperglycemia and hyperlipidemia, indicating the 
possible interplay between them²¹⁻²³.

This study provides a synopsis of the 
predominant characteristics of diabetes 
that may potentially impact the atherogenic 
process. The investigation further explores 
the connection between atherosclerosis and 
diabetes mellitus, elucidating the potential 
mechanistic underpinnings of this relationship.

Methods
For this review, relevant articles published 
from 1961 to 2025 were collected from 
scientific databases, including Google Scholar, 
PubMed, SID, Web of Science, and Scopus. The 
terms diabetes, coronary heart disease, and 
atherosclerosis were used. Eligible articles were 
then reviewed.

Results
Aspects Relating to the Diabetes-Atherosclerosis 
Relationship
The leading cause of mortality in diabetic 

patients is coronary artery disease²⁴˒²⁵, and 
the rate is higher in women compared with 
diabetic male patients²⁶. The factors involved 
in atherosclerosis and diabetes are presented 
below and summarised in Table 1. Their 
mechanistic aspects are also depicted in Figures 
1 and 2.

Role of Nitric Oxide in Diabetes and 
Atherosclerosis
The process of accelerated atherosclerosis in 
diabetics is related to disruption of nitric oxide 
production. Nitric oxide causes the blood to 
properly flow into the vessels. Additionally, nitric 
oxide protects against the reaction of platelets 
and leukocytes with the blood vessel wall and 
subsequent intravascular damage. Nitric oxide 
also has immunomodulatory, anti-inflammatory, 
and antioxidant activities²⁷⁻²⁹. 

In diabetes, nitric oxide levels decrease, and as 
a result, the process of vasodilation is impaired. 
The accumulation of platelets also increases. It 
has been shown that under specific pathological 
conditions, such as high cholesterol, eNOS is 
impaired and that nitric oxide is produced in 
place of the nitrite proxy. In atherosclerosis, we 
see decreased eNOS expression³⁰.

The Role of LDL Lipoprotein in Diabetes and 
Atherosclerosis
The results of studies conducted on diabetic 
patients have demonstrated an elevated risk 
and accelerated progression of atherosclerosis³¹. 
According to research, atherosclerosis can 
develop at an earlier age in paediatric patients 
with type I diabetes. Moreover, dyslipidaemia, 
particularly increased LDL level, is a precipitating 
atherogenic factor in addition to hyperglycaemia 
and inflammatory responses³². The blood level of 
small, dense LDL in diabetic patients is a proven 
predictor of atherosclerosis progression³³. 
LDL is an independent determinant of CVD. 
A moderate-intensity LDL for patients aged 
40 to 75 years is important to evaluate their 
diabetes³⁴. LDL easily penetrates the artery wall, 
oxidises, and causes atherosclerotic disease, 
which is most common in diabetics³⁵.
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Factor Role in Diabetes Mechanistic Contribution to 
Atherosclerosis References 

Advanced Glycation End 
Products (AGEs) 

Formed through non-
enzymatic glycation of 
proteins and lipids under 
hyperglycemic conditions. 
AGEs accumulate in various 
tissues and are elevated in 
diabetic patients 

AGEs bind to their receptor 
(RAGE), triggering oxidative 
stress and inflammation. They 
promote crosslinking of 
collagen, leading to vascular 
stiffening, and enhance the 
oxidation of low-density 
lipoprotein (LDL), 
contributing to plaque 
formation. 

(163-165) 

RAGE (Receptor for AGEs) 

A multi-ligand receptor that is 
upregulated in diabetic 
conditions. RAGE activation 
perpetuates chronic 
inflammation and cellular 
stress. 

RAGE activation leads to the 
activation of nuclear factor 
kappa B (NF-κB), promoting 
the expression of pro-
inflammatory genes. This 
contributes to endothelial 
dysfunction, vascular 
inflammation, and progression 
of atherosclerotic lesions. 

(166-168) 

 

Hyperglycemia impairs 
endothelial nitric oxide (NO) 
production, reducing 
vasodilation and promoting a 
pro-thrombotic state 

Endothelial dysfunction 
increases vascular permeability 
and facilitates the adhesion of 
monocytes and LDL to the 
endothelium, initiating 
atherogenesis. It also 
promotes vasoconstriction and 
thrombosis. 

(169, 170) 

Oxidative Stress 

Elevated glucose levels 
increase the production of 
reactive oxygen species (ROS), 
overwhelming antioxidant 
defenses. 

ROS oxidize LDL particles, 
which are then taken up by 
macrophages to form foam 
cells, a key component of 
atherosclerotic plaques. 
Oxidative stress also damages 
endothelial cells, exacerbating 
vascular injury. 

(171, 172) 

Epigenetic Modifications 

Persistent hyperglycemia 
induces epigenetic changes, 
such as DNA methylation and 
histone modifications, leading 
to "metabolic memory." 

These epigenetic alterations 
sustain the expression of pro-
inflammatory and pro-
atherogenic genes even after 
glycemic control is achieved, 
contributing to ongoing 
vascular damage. 

(173, 174) 

Inflammatory Cytokines 

Diabetes is associated with 
increased levels of 
inflammatory cytokines like 
interleukin-6 (IL-6) and tumor 
necrosis factor-alpha (TNF-α). 

These cytokines promote the 
recruitment of immune cells to 
the endothelium, enhancing 
inflammation and plaque 
instability in atherosclerosis 

(175, 176) 

Insulin Resistance 
A hallmark of type 2 diabetes, 
leading to impaired glucose 
uptake and hyperinsulinemia. 

Insulin resistance contributes 
to dyslipidemia and 
endothelial dysfunction, both 
of which are risk factors for 
atherosclerosis. 

(177, 178) 

Lipid Metabolism Disorders 

Diabetes often leads to 
elevated triglycerides and 
decreased high-density 
lipoprotein (HDL) cholesterol 
levels. 

Abnormal lipid profiles 
accelerate the formation of 
atherosclerotic plaques by 
increasing the availability of 
atherogenic lipoproteins. 

(179, 180) 

Table 1. Factors Involved in Diabetes-Atherosclerosis and the Expression of Mechanistic Aspects
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Factor Role in Diabetes Mechanistic Contribution to 
Atherosclerosis References 

Monocyte/Macrophage 
Activation 

Hyperglycemia and AGEs 
activate monocytes and 
macrophages, enhancing their 
inflammatory responses. 

Activated macrophages ingest 
oxidized LDL, transforming 
into foam cells and 
contributing to plaque 
formation and progression. 

(181, 182) 

Genetic Factors 
Certain genetic 
polymorphisms increase 
susceptibility to both diabetes 
and atherosclerosis. 

Genetic variations can affect 
lipid metabolism, 
inflammatory responses, and 
endothelial function, thereby 
influencing the risk and 
progression of atherosclerosis 
in diabetic individuals. 

(183, 184) 

AGEs (Advanced glycation end-products), RAGE (Reseptor Advanced glycation end-products), LDL (High Density Lipoprotein), 
Nuclear factor kappa B (NF-κB), NO (Nitrogen Oxidative),  ROS (Reactive Oxygen Species), inflammatory cytokines like interleukin-
6 (IL-6), TNF-α (Tumor necrosis factor alpha),    
 

Table 1. Factors Involved in Diabetes-Atherosclerosis and the Expression of Mechanistic Aspects

Figure 1. Association of Apo-A, Coagulation Factor-7, Nitric Oxide (NO), Vitamin D, Homocysteine, and Inflammation
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The Role of Apolipoprotein A in Diabetes and 
Atherosclerosis
Apo A acts as an antioxidant component by 
increasing antioxidant activity and preventing 
oxidation. It is known for its anti-diabetic and anti-
inflammatory activity that prevents LDL changes 
and lipoxygenase function. One study showed that 
Apo A reduces vascular lipids and macrophages 
and prevents atherosclerosis³⁶. The concentrations 
of Apolipoprotein A-I and Apolipoprotein A-II have 
been demonstrated to increase beta-cell insulin 
secretion and decrease plasma glucose levels. It 
can be reasonably deduced that they may also 
have a protective role in T2DM, as well as reducing 
endothelial deposition and increasing HDL 
levels³⁷. Apolipoprotein A-I, the primary protein 
constituent of high-density lipoproteins, has been 
demonstrated to possess anti-diabetic properties. 
It enhances insulin sensitivity and improves the 
function of pancreatic beta cells. Apolipoprotein A-I 

has also been shown to enhance insulin production 
and secretion in response to hyperglycaemia, 
indicating its therapeutic potential in diabetic 
patients³⁸.

The Role of Insulin Resistance in Diabetes and 
Atherosclerosis
In diabetics, the entire clotting process is 
disrupted. In patients with T2D, elevated 
blood glucose levels are caused by insulin 
resistance, and platelet adhesion to the vessel 
wall increases. This is because the function of 
insulin as a natural antagonist of platelets in the 
body is disrupted³⁹. Insulin resistance has been 
demonstrated to diminish VLDL clearance. It is 
possible that this may have a lesser impact on 
the elevation of triglycerides in this particular 
condition. VLDL is metabolised to remnant 
lipoproteins and LDL, both of which are strongly 
associated with atherosclerosis. High LDL and 

Figure 2. Association of Uric Acid (U), Age, ROS, miRNA, Endothelin-1 (ET-1), and Protein Kinase-C (PKC) with atherosclerosis and 
diabetes patients
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low HDL levels are observed in insulin resistance. 
Additionally, higher levels of VLDL in diabetes 
can impair HDL metabolism⁴⁰.

The Role of C-Reactive Protein in Diabetes and 
Atherosclerosis
Fluctuations in blood glucose levels cause 
inflammatory responses in patients with 
T2D. These inflammatory responses are 
accompanied by elevated levels of CRP and 
cause vascular disease in diabetic patients, 
which is prominent in atherosclerosis⁴¹. 
Additionally, preliminary evidence indicates a 
potential correlation between CRP and lipids. 
CRP has the capacity to coagulate fat and 
lead to atherosclerosis⁴². The capacity for fat 
coagulation and interaction between CRP and 
cholesterol⁴³ is linked to the advancement of 
atherosclerosis. Furthermore, the binding of 
CRP to ox-LDL has been demonstrated in vivo 
in diabetic patients with atherosclerosis⁴⁴. 
In a study conducted by Asgari et al., an 
elevation in CRP was observed in alloxan-
induced diabetic rats relative to their untreated 
counterparts. Additionally, this study revealed 
that administration of cucurbita powder has 
potential benefits in treating dyslipidaemia and 
lowering CRP levels in rats⁴⁵. Also, Artocarpus 
lakoocha leaf extract has shown a reduction in 
CRP and inflammation, as well as suppression 
of acetaminophen-induced hepatotoxicity⁴⁶.

The Role of Coagulation Factor 7 in Diabetes and 
Atherosclerosis
Studies show that factor 7, a clotting protein, is a 
major contributor to thrombosis. It is related to 
inflammatory parameters, as IL-6 and CRP in patients 
with hypercholesterolaemia are high and suggest a 
relationship in patients with atherosclerosis and 
diabetes⁴⁷. Folsom and colleagues studied the 
long-term relationship between fibrinogen and 
factor 7 in 440 men and 550 women at risk for 
atherosclerotic disease. They reported that factor 
7 in younger individuals, women, and patients who 
were overweight and diabetic, as well as in patients 
who had decreased plasma triacylglycerol, had a 
greater increase during hormone therapy. Based on 

the results of this long-term study, CVD risk factors 
were related to elevated plasma levels of fibrinogen 
and factor 7⁴⁸.

The Role of Endothelin-1 in Diabetes and 
Atherosclerosis
Endothelin factor 1 (ET1), which is a 
vasoconstrictor secreted by endothelial cells, 
vascular wall muscles, and inflammatory cells, 
is responsible for the dysfunction of the 
endothelium and small vessel disease. 
Endothelin factor 1 level is higher in diabetic 
patients compared to healthy individuals⁴⁹. 
Carotid artery calcification is also more common 
in patients with T2D and atherosclerosis than in 
healthy individuals¹⁷. 

Endothelin-1 is a hallmark of endothelial dys-
function in diabetes, increasing vasoconstriction 
and decreasing nitric oxide production, which is 
crucial for vasodilation. The consequence of this 
imbalance is diminished blood flow, which in turn 
gives rise to microvascular complications including 
retinopathy, nephropathy, and neuropathy⁴⁹.

Homocysteine Role in Diabetes and 
Atherosclerosis
There is a relationship between coronary 
artery disease and hyperhomocysteinemia. 
Hyperhomocysteinemia and the formation of 
homocysteine impair nitric oxide production and 
increase oxidative stress. Reducing the level of 
homocysteine is likely to be another treatment 
goal for diabetes and atherosclerosis⁵⁰˒⁵¹.

Elevated homocysteine levels have been 
demonstrated to induce an increase in insulin 
resistance and impairment of β-cell function, 
which in turn can contribute to the development 
of type 2 diabetes. This phenomenon is 
attributable to the presence of oxidative stress 
and inflammation, which are instigated by 
elevated levels of homocysteine⁴⁴. Homocysteine 
has been demonstrated to exert a deleterious 
effect on endothelial cells by reducing nitric 
oxide levels and inducing oxidative stress and 
inflammatory response. These processes have 
been shown to play a role in the initiation and 
progression of atherosclerosis⁴⁵.
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Inflammation Role in Atherosclerosis and 
Diabetes
Atherosclerosis is a major complication of 
diabetes. It involves various pathogenic factors 
including oxidative stress and endothelial 
dysfunction⁵²˒⁵³. Hyperglycaemia and hyperlip-
idaemia are associated with rapid atherosclerosis 
development⁵⁴. Glycaemia and dyslipidaemia 
may cause endothelial dysfunction⁵⁵. In addition, 
in type 2 diabetes patients, oxidative stress is 
one of the main causes of insulin resistance. It 
may also increase low-density lipoprotein (LDL) 
oxidation. High levels of glucose and prolonged 
oxidative stress lead to the formation of Advanced 
Glycation End Products. AGEs play a crucial role 
in diabetes vascular complications through 
receptor interactions (RAGEs). Oxidative stress 
in the endothelium caused by hyperglycaemia 
is associated with diabetes complications, which 
can induce endothelial cell apoptosis, vascular 
inflammation, and the promotion of endothelial 
activation³⁰.

Diabetes enhances lipokinase and tumour 
necrosis factor (TNF) release from adipose 
tissues. IL-1β, one of the key inflammatory 
mediators in diabetes pathogenesis, usually 
promotes insulin resistance, disrupts islet cell 
function, and leads to cell apoptosis. Excessive 
expression of pro-inflammatory factors can 
lead to complications of diabetes⁵⁶. NLRP3 
inflammasome is associated with diabetes and its 
complications⁵⁷. Blood glucose usually activates 
the NLRP3-ASC inflammasome, which activates 
caspase-1 and induces IL-18 and IL-1β secretion 
in monocyte cells⁵⁸. Wang et al. showed that 
there was an association between NLRP3 gene 
polymorphism and type 2 diabetes⁵⁹. NLRP3 
and its downstream molecules are upregulated 
in diabetes and atherosclerosis⁶⁰. NLRP3, IL-18, 
and IL-1β play crucial roles in atherosclerosis 
and are major atherosclerosis risk factors⁶¹. Ox-
LDL also induces IL-1β macrophage secretion⁶². 
A high-fat diet or ox-LDL in endothelial cells 
induces ROS production, activating the NLRP3 
inflammasome and secreting IL-1β. This occurs 
in patients with diabetes and atherosclerosis⁶³. 
NLRP3 reduces the severity of atherosclerosis. 

In addition, acute hypercholesterolaemia can 
exacerbate endothelial dysfunction by NLRP3 
inhibition⁶⁴.

In the inflammatory process, inflammatory 
protein complexes enhance inflammatory 
cytokine production and cell death when 
encountered with pathogenic and harmful stimuli. 
On the other hand, mitochondria play a role in 
the initiation and regulation of inflammation⁶⁵. 
Inflammatory activators release cardiolipin 
and activate inflammation⁶⁶. Inflammation is 
also associated with oxidative stress⁶⁷, which 
aggregates diabetes and atherosclerosis.

Vitamin D Deficiency in Atherosclerosis and 
Diabetes
Vitamin D deficiency leads to increased vascular 
cell adhesion molecules and selectins responsible 
for the creation of atherosclerotic plaques 
in these patients and in diabetics. However, 
supplementation reduces triglycerides, total 
cholesterol, and LDL, and increases HDL in 
affected patients⁶⁸. 

The process of atherosclerosis starts at 
an earlier age in the presence of vitamin D 
deficiency⁶⁹. Atherosclerosis, diabetes, and 
coronary heart disease are slightly more likely in 
individuals with adequate vitamin D⁷⁰. 

Vitamin D can promote cardiovascular 
health through its immunomodulatory, anti-
inflammatory, and antioxidant properties. More 
studies need to be done due to the increased 
rate of vitamin D deficiency and cardiovascular 
events worldwide, and the potential role of 
vitamin D in the process of atherosclerosis⁷¹˒⁷².

According to research, hypertension, 
dyslipidaemia, insulin resistance, and obesity 
are accompanied by vitamin D deficiency 
and can lead to atherosclerosis. Additionally, 
subclinical markers of atherosclerosis, such 
as increased carotid intima-media thickness 
and coronary artery calcification, are seen in 
vitamin D deficiency⁷³. These findings suggest 
that vitamin D plays an important role in the 
pathogenesis of atherosclerosis⁷⁴. On the 
other hand, vitamin D or plants containing this 
vitamin can suppress inflammatory mediators 
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and improve management of diabetes and 
atherosclerosis⁷⁵˒⁷⁶.

Uric Acid Roles in Diabetes and Atherosclerosis
Increased production of reactive oxygen species 
leads to inflammation and elevation of uric acid 
(UA) and vascular disease²¹. By increasing the 
production of ROS such as H₂O₂, UA imposes pro-
oxidant effects in vascular tissue and vascular 
damage, especially in diabetic and cardiac 
patients such as those with atherosclerosis⁷⁷. 
Oxidative stress can also affect insulin gene 
expression and decrease insulin secretion⁷⁸.

Inflammation, by increasing uric acid (UA), 
expresses interleukin 6, interleukin 1β, CRP, 
and tumour necrosis factor α. Inflammation 
activation by UA results in insulin resistance⁷⁹. 
Uric acid increases TNF-α levels and activates 
the classical inflammatory pathway⁸⁰.

Increased mitochondrial production caused 
by inflammation, hyperglycaemia, ROS, and 
endothelial dysfunction are chronic complication 
features of diabetes⁸¹. Renin–angiotensin–
aldosterone activation leads to renin–angiotensin–
aldosterone system (RAAS) activation through 
increased juxtaglomerular renin production⁸². 
UA-induced ROS increases angiotensin II, which 
causes the release of aldosterone and leads to 
the activation of the RAAS⁷⁷˒⁸³. In diabetes, RAAS 
activation causes high intraglomerular pressure, 
vascular dysfunction, and inflammation, which in 
turn lead to cardiovascular diseases⁸⁴.

The Role of Age in Diabetes and Atherosclerosis
Age is a major factor in the development of 
diabetes and dyslipidaemia⁸⁵. Patients with 
type 2 diabetes typically have low HDL, elevated 
TG, and increased levels of small and dense 
LDL⁸⁶. With aging, TG metabolism changes, 
and its serum levels increase. This makes older 
individuals more susceptible to cardiovascular 
complications⁸⁷. Recruitment of immune cells 
(T-cells and macrophages) and the activation 
and cytotoxicity of beta cells increase apoptosis 
or cell death in vascular cells associated with 
diabetes⁸⁸. There is also a direct relationship 
between old age and the risk of atherosclerosis⁸⁹. 

Understanding the mechanisms of morbidity and 
mortality associated with age in atherosclerotic 
and diabetic patients may improve treatment in 
these high-risk groups⁹⁰.

Several studies have linked Tet2 gene 
expression with atherosclerosis. Lower Tet2 
gene expression is associated with larger 
atherosclerotic plaques⁹¹. In addition, a lack 
of Tet2 in macrophage cells derived from the 
bone marrow leads to increased secretion of 
inflammatory markers from smooth muscle cells. 
Aging also contributes to the manufacture of 
chemical absorbents, which increase the uptake 
of myeloid cells into the arterial wall and cause 
an increase in atherosclerosis. Vascular factors 
like the effect of age on vascular bioenergetics, 
mitophagy, and inflammation caused by 
mitochondrial dysfunction in blood vessels 
are examples that influence atherosclerosis⁹². 
MtDNA damage can cause inflammation, 
mitochondrial dysfunction, and apoptosis⁹³˒⁹⁴.

 
Vascular Endothelial Changes in Diabetes and 
Atherosclerosis
The function of the vascular endothelium is 
to represent a dynamic boundary between 
the circulation and the surrounding tissues. 
These single-layered endothelial cells may act 
as non-adhesive surfaces for leukocytes and 
platelets, producing crucial regulatory factors 
including nitric oxide and prostaglandins⁹⁵. 
The accumulation of these substances 
on the endothelial cells is called plaque. 
Atherosclerotic plaque causes small vessel 
narrowing and blood flow obstruction. Also, 
the disintegration of plaques may cause blood 
clots⁹⁵⁻⁹⁸. Diabetes has been demonstrated 
to induce endothelial dysfunction, typified by 
impaired vasodilation, augmented oxidative 
stress, and enhanced inflammation. This 
impairment is attributable, at least in part, 
to decreased nitric oxide production and 
increased reactive oxygen species⁹⁹.

The Role of Oxidative Stress in Diabetes and 
Atherosclerosis
In diabetes, elevated glucose levels are 
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known to trigger a surge in the production of 
reactive oxygen species, a phenomenon that 
arises through several mechanisms including 
glucose auto-oxidation and mitochondrial 
dysfunction¹⁰⁰. ROS has been demonstrated 
to damage cellular components, disrupt 
insulin secretion, and contribute to beta cell 
dysfunction¹⁰¹. Additionally, oxidative stress can 
lead to endothelial damage and atherosclerosis 
progression in diabetic patients due to an 
imbalance between antioxidants and reactive 
oxygen species¹⁰²˒¹⁰³.

Adipose tissues are major sources of ROS. 
Visceral fat accumulation is upstream of ROS 
production¹⁰⁴. Atherosclerosis and diabetes 
in metabolic syndrome are accompanied by 
increased reactive oxygen species production in 
adipose tissue, which has been associated with 
increased NADPH oxidase expression. This is 
also associated with the inactivation of catalase, 
an antioxidant enzyme. Studies done on obese 
mice showed that NADPH oxidase inhibitors can 
reduce reactive oxygen species production in 
adipose tissue. Moreover, several factors may 
reduce active fat ROS in obesity¹⁰⁵.

The Role of miRNA in diabetes and 
atherosclerosis
miR-126 and miR-146 have gained attention 
in atherosclerosis and diabetes; for example, 
they are important indicators of endothelial 
cell function¹⁰⁶. MicroRNAs have been 
demonstrated to regulate endothelial function 
and inflammation, which are recognised as 
pivotal factors in the initiation and progression 
of atherosclerosis. For instance, microRNA-126 
modulates the expression of pro-inflammatory 
cytokines and adhesion molecules¹⁰⁷. A great 
diversity of miRNAs has been observed. For 
example, another important miRNA, miR-
378a, plays a significant role in the homeostasis 
of hyperglycaemia and energy levels¹⁰⁸. 
According to studies, miRNA-378a has a role in 
the expansion of atherosclerosis. Researchers 
showed that miRNA-378a targets SIRPα. As a 
result, it regulates macrophage phagocytosis 
and atherosclerosis progression¹⁰⁹.

The Role of Dnm3os in Diabetes and 
Atherosclerosis     
The overexpression of DNM3OS in macrophages 
has been shown to result in enhanced 
inflammation, which is thought to occur 
as a consequence of alterations to global 
histone modifications, in addition to increased 
expression of immune response genes. This 
molecule has been demonstrated to interact 
with nucleolin and ILF-2, proteins that regulate 
chromatin structure, resulting in increased 
inflammatory gene expression¹⁰⁹. Another 
non-coding RNA implicated in diabetes-related 
atherosclerosis is Dnm3os, the reverse strand of 
dynamin 3.

This RNA has been found in macrophages 
of both mice and human diabetic cases. Its 
overexpression leads to inflammation and 
enhanced macrophage phagocytosis, causing 
epigenetic chromatin modifications that further 
exacerbate the inflammatory response in 
diabetic patients with atherosclerosis¹⁰⁴.

The Role of Protein Kinase C in Diabetes and 
Atherosclerosis
Protein kinase C is an important kinase in 
the signalling pathway¹¹⁰, and diacylglycerol 
is needed for its activation. The activation of 
abnormal glucose and lipid metabolism has 
been linked to altered vascular signalling, which 
contributes to diabetic complications. For the 
synthesis of diacylglycerol, increased glucose 
absorption by vascular cells is necessary. 
Increased activation of PKC may also trigger 
the oxidative stress response¹¹¹. Diabetic 
animal models show increased vascular PKC 
activation. Enhanced PKC signalling has several 
atherogenic side effects¹³. It is well established 
that specific PKC isoforms are associated with 
various pathophysiological conditions, including 
oxidative stress, inflammation, endothelial 
dysfunction, and apoptosis of vascular smooth 
muscle cells¹¹².

Immunological and Molecular Aspects of 
Diabetes and Atherosclerosis
The process of diabetes and arteriosclerosis 
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starts with a change in endothelial function and 
structure. They produce a variety of chemokines 
and cytokines, one of which is CXCL12, which 
causes inflammation. Also, chemokine receptors 
such as CXCR4 and ACKR3 have been considered 
good targets for atherosclerosis therapy⁹⁸. 
From a structural standpoint, the endothelial 
glycocalyx is crucial as well. For instance, it has 
a notable impact on anticoagulant mechanisms. 
This structure, made up of proteoglycans and 
extracellular matrix components, can have its 
function diminished or impaired during the 
inflammatory process¹¹³˒¹¹⁴.

Arteries and veins can regulate their 
internal diameter through vasoconstriction 
and vasodilatation, which are controlled by the 
autonomic nervous system. These processes 
help regulate blood flow to downstream organs 
and body temperature. Blood vessels vary 
greatly in size, from 25 mm for the aorta to 8 
µm for the capillaries. Vasoconstriction narrows 
blood vessels by smooth muscle contraction 
and is stimulated by vasoconstrictors such as 
prostaglandins, vasopressin, angiotensin, and 
epinephrine. Vasodilation, a similar process, is 
mediated by nitric oxide¹¹⁵⁻¹¹⁷. There is increasing 
evidence that reduced intercellular junctions 
lead to endothelial hyperpermeability¹¹⁸.

MiRNAs have crucial roles in NO production 
and endothelial cell growth. For example, miR-
217 is highly induced during endothelial cell 
aging¹¹⁹. This leads to decreased expression of 
Sirt1. NO activates endothelial synthase. eNOS 
produces NO and reduces atherosclerosis and 
diabetes¹²⁰. 

Inflammatory innate immune signalling 
complexes are important modulators of the IL-1 
cytokine family in atherosclerosis, contributing 
to the inflammatory response and promoting 
disease progression¹²¹.

NLRP3 and NLRP1 are also major components 
of inflammation. These proteins are expressed in 
macrophage cells and lead to apoptosis and the 
formation of atherosclerotic plaques in patients. 
In addition, hypoxia can suppress mRNA 
expression in macrophages with activation of 
NLRP3. Activation of the NLRP3 inflammasome 

recruits and activates caspase-1, which in turn 
activates inflammatory mediators¹²²˒¹²³. 

Adipocyte-like adiponectin can help increase 
plaque stability and reduce proliferation 
of smooth muscle cells in the endothelial 
wall, thereby reducing the progression of 
atherosclerosis¹²⁴⁻¹²⁶. Observations (AMP-
dependent signalling pathway, AMPK, 
cyclooxygenase-2 dependent) support that 
adiponectin represses plaque growth. For 
example, cytokines such as TNF-α and IL-1 
also activate monocytes and macrophages. 
Macrophages can modify LDL by the process 
of peroxidation; oxLDL has cytotoxic effects 
on endothelial and mesangial cells and 
causes central necrosis in the progenitors of 
atherosclerotic plaques. In addition, oxLDL 
promotes the release of cytokines produced 
by endothelial cells and contributes to plaque 
formation¹²⁷.

Discussion
This study assessed the relationship between 
diabetes and atherosclerosis, which is a 
predictor of coronary artery disease. It was 
stated that in diabetes and its mechanisms, due 
to the inflammatory process, lipid accumulation, 
platelet adhesion, nitric oxide reduction, and 
vasoconstriction, the process of atherosclerosis 
intensifies.

There are different mechanisms playing 
a role in the development of diabetes and 
atherosclerosis, which can be classified as 
preventable and non-preventable factors. Non-
preventable factors include age, gender, and 
heredity. On the other hand, preventable factors 
include diet, regular exercise, smoking cessation, 
mental health, and controlling underlying 
diseases like hypertension¹²⁸˒¹²⁹.

Detection of atherosclerosis can be done 
through the assessment of total cholesterol, 
LDL, HDL, triglycerides, blood pressure, exercise 
testing, magnetic resonance imaging (MRA), 
or angiography. There are chemical and herbal 
treatments and antioxidants for managing 
atherosclerosis in diabetic patients¹³⁰˒¹³¹.

Research conducted by Afridi in 2009 showed 
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that the plasma chromium of type 2 diabetics 
was about 33% higher than that of controls. 
They reported this increase to be up to 50%. The 
amount of chromium in diabetics is higher than 
in healthy populations¹³².

Diabetic smokers are twice as likely to 
develop atherosclerosis as non-diabetic 
smokers. The inhalation of hot cigarette smoke 
results in an increase in core body temperature. 
After that, the lungs lose their ability to undergo 
physiological exchange, and as a result, damage 
occurs to the thickness of the capillary intima. 
Considering that in diabetics, the capillary intima 
is already compromised, the damage caused 
by cigarette smoke doubles, accelerating the 
disease process. Research shows that capillary 
damage occurs two years earlier in diabetic 
smokers than in non-diabetic smokers¹³³.

Additionally, dyslipidaemia occurs through 
the disruption of vasodilation and the reduction 
of nitric oxide production, which is common in 
diabetics and also raises blood pressure. On the 
other hand, the reduction of blood lipids prolongs 
the presence and activity of NO in the endothelial 
wall, thereby promoting vasodilation. Studies by 
Chen YC et al. (2013) showed the role of fatty 
plaques in atherosclerosis and diabetes. ET-1 
expression should be associated with endothelin 
secretion in these diseases¹³⁴.

The majority of prior research has suggested 
a relationship between hyperhomocysteine 
levels and type 2 diabetes. Moreover, a recent 
meta-analysis involving over 8,000 participants 
strongly supported this relationship¹³⁵. Although 
another study on Mediterranean patients found 
no significant difference in homocysteine levels 
between diabetic and non-diabetic individuals¹³⁶, 
the study by Russo et al. revealed no significant 
difference in total homocysteine levels between 
diabetic and non-diabetic women¹³⁷, suggesting 
a potential gender effect on this relationship.

Furthermore, despite strong evidence 
supporting a causal link between homocysteine 
levels and the development of T2DM¹³⁵, it is 
believed that increased homocysteine levels lead 
to insulin resistance by reducing the secretory 
response to insulin, which is due to increased 

production of reactive oxygen species¹³⁸. 
However, in diabetes, the liver accelerates 
glucocorticoid secretion, leading to increased 
homocysteine catabolism and a consequent 
decrease in plasma homocysteine levels¹³⁹. 

Defective mitochondria trigger an immune 
response, especially in damaged cells, and release 
mitochondrial DAMPs, causing the release of 
inflammatory cytokines. Mitochondria can 
initiate and regulate NLRP3 and inflammation⁶⁵. 
An NLRP3 activator releases cardiolipin, causing 
inflammation⁶⁶˒¹⁴⁰˒¹⁴¹. There is also a link 
between atherosclerosis and mtDNA¹⁴²⁻¹⁴⁴. Thus, 
the increase in intracellular lipid accumulation 
occurs in cytokine secretion¹⁴⁵. Pro-inflammatory 
responses in macrophages are activated by 
the release of inflammatory cytokines through 
the stimulation of phagocytosis by LDL¹⁴⁶. 
Atherosclerotic lesions in arterial walls may have 
a link to uncontrollable fat accumulation¹⁴⁷.

Defective mitophagy results in chronic 
inflammation. Thus, inflammation can model 
the development of atherosclerosis, which has 
been shown to stem from chronic inflammation 
caused by impaired mitophagy and modified 
LDL¹⁴⁸.

Studies conducted on the mechanism of 
vitamin D show that vitamin D decreases 
inflammatory cytokines in monocytes. By 
suppressing IL-6, it subsequently decreases the 
synthesis of acute-phase CRP, which can lead 
to atherosclerosis development⁵⁵˒⁶⁷. A porcine 
study demonstrated that vitamin D increases 
nuclear factor κB activation, imposing anti-
inflammatory activity¹⁴⁹. 

Vitamin D deficiency leads to oxidative stress, 
increasing inflammation and atherosclerosis⁶⁸. 
Vitamin D deficiency or supplementation has 
been associated with heart attack, stroke, and 
diabetes. Vitamin D deficiency increases CVD, 
hypertension, and diabetes risks. Unfortunately, 
the results regarding symptom relief in CVD are 
not clear and require more research¹⁵⁰˒¹⁵¹.

Studies express the prospect of miRNA 
associated with diabetes, atherosclerosis, and 
heart disease. It is important to study miRNA 
signals rather than individual miRNA types¹⁵².
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Many miRNAs identified in humans are 
implicated in the pathogenesis of diabetes 
mellitus and microvascular complications¹⁵³. 
miR-146 and miR-126 are mainly related to 
atherosclerosis¹⁰⁶.

The complexity of PKC-activated 
intracellular signalling pathways makes it 
important to recognise the precise atherogenic 
mechanisms¹⁵⁴. Increased activation of PKCβ is 
associated with atherosclerosis development, 
and its inhibition decreases atherosclerotic 
lesions¹⁵⁵.

Regarding uric acid, research in the Japanese 
population has indicated that XO activity is an 
important CVD biomarker. Additionally, XO 
activity and the resultant production of uric 
acid and ROS can impact microcirculation, 
leading to tissue damage. This is also seen in 
the early stages of chronic kidney disease, as 
well as microartery dysfunction, hypertension, 
diabetes, and atherosclerosis¹⁵⁶˒¹⁵⁷.

Additionally, uric acid stimulates NADPH 
oxidase, which results in the reduction of nitric 
oxide and an increase in lipid oxidation¹⁵⁸. 
Excessive production of reactive oxygen species 
also diminishes nitric oxide availability, while 
uric acid further restricts NO synthesis. Elevated 
ROS levels and activated NADPH oxidase 
contribute to mitochondrial damage, including 
reduced mitochondrial function and ATP 
production¹⁵⁹˒¹⁶⁰.

Research indicates a connection between 
age, diabetes, and arteriosclerosis, revealing that 
aging leads to increased aortic mitochondrial 
dysfunction. IL-6 is also associated with vascular 
mitochondrial dysfunction in a positive feedback 
loop in the aorta. These age-related changes 
aggravate vascular atherogenesis in acute 
hyperlipidaemic states⁸⁹. Age and dyslipidaemia 
are associated with prediabetes and diabetes⁸⁵. 

Endothelial glycocalyx has a role in endothelial 
function. For instance, it has a substantial 
impact on anticoagulant mechanisms. This 
structure, which consists of extracellular matrix 
and proteoglycan components, may experience 
diminished or lost functionality during the 
inflammatory process¹¹³˒¹¹⁴.

For vascular endothelial dysfunction 
associated with atherosclerosis, the main 
thing to consider is the activation of the 
endothelium. Molecular activation in the form 
of chemokine, cytokine, and adhesion molecule 
expression interacts with platelets, leukocytes, 
and other immune cells¹⁶¹. Increased ROS 
production induces endothelial dysfunction 
by activating pro-inflammatory and pro-
thrombotic pathways, leading to protein, lipid, 
and nucleic acid oxidations. Mitochondrial 
DNA is particularly vulnerable to ROS, resulting 
in elevated ROS generation and apoptosis. 
Disruption of mitochondrial function accelerates 
atherosclerotic plaque development¹⁶². 

Conclusion
Atherosclerosis is caused by the production 
of atheromatous plaque in the vessel walls. 
Depending on the location of vessel involvement, 
it is associated with heart attack and stroke. 
Diabetes is one of the most common chronic 
diseases and a risk factor for atherosclerosis 
and stroke. One of the main causes of death 
in this disease is vascular accidents, which 
are essentially due to the phenomenon of 
atherosclerosis. This article presented current 
insights into the pathophysiological effects of 
atherosclerosis and diabetes, with an emphasis 
on endothelial dysfunction, aging, inflammatory 
factors, and the roles of miRNA, uric acid, 
ROS, nitric oxide, vitamin D, and elevated 
homocysteine. It summarised recent evidence 
on the interactions among these molecular and 
cellular components.

Limitations
The most important limitations of the study can 
be stated as follows: The studies referenced may 
be subject to publication bias, where positive 
findings are more likely to be published than 
negative or inconclusive results, potentially 
skewing the overall understanding of the topic. 
Regarding the mechanistic aspects, while the 
discussion touches on various mechanisms 
linking diabetes and atherosclerosis, it does 
not provide in-depth mechanistic studies 
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or experimental data to substantiate these 
pathways. Hence, further studies are needed 
to provide deeper insights into the diabetes–
atherosclerosis link.
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