Document Type : Original Article

Authors

1 Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran

2 Seyyed-al Shohada University Hospital, Urmia University of Medical Sciences, Urmia, Iran

3 Department of Pharmacology Toxicology, School of Pharmacy, Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran

4 Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran

10.48305/arya.2025.42811.2980

Abstract

BACKGROUND: The CYP2D6 gene locus is complex and highly polymorphic. Given the clinical importance of the CYP2D6 enzyme in liver xenobiotic metabolism, genotyping its significant alleles among different ethnic groups is essential for evaluating the efficacy of certain drugs. In this study, we assessed the frequency of the CYP2D6*4, *9, *10, and *41 alleles in a healthy population from northwestern Iran.
METHODS: Fifty unrelated healthy individuals from West Azerbaijan Province, Iran, were studied using PCR-RFLP and ARMS-PCR techniques.
RESULTS: CYP2D6*9 (rs5030656) allele was not detected. The frequency (%) of CYP2D6*4 (rs3892097), CYP2D6*10 (rs1065852) and CYP2D6*41 (rs28371725) alleles were 10%, 13% and 8%, respectively. 
CONCLUSION: Our findings indicate that the frequencies of “non-functional” and “reduced function” alleles are relatively high in this population. Determining Cytochrome P450 2D6 allele variations can contribute to risk assessment and patient management regarding adverse or poor drug responses, ultimately aiding in the prevention of increased mortality risks among different populations.

Keywords

1. Taylor C, Crosby I, Yip V, Maguire P, Pirmohamed M, Turner RM. A Review of the Important Role of CYP2D6 in Pharmacogenomics. Genes (Basel). 2020 Oct 30;11(11):1295. https://doi.org/10.3390/genes11111295
2. Yovinska S, Bakalov D, Mihova K, Kamenarova K, Kaneva R, Nikolov R, et al. Genetic Polymorphisms in CYP2 Gene Family in Bulgarian Individuals and their Clinical Implications. Acta Medica Bulgarica 2024; 51(1):1-7. https://doi.org/10.2478/amb-2024-0001
3. Kane M. CYP2D6 overview: allele and phenotype frequencies. InMedical Genetics Summaries [Internet] 2021 Oct 15. National Center for Biotechnology Information (US). Available from: https://www.ncbi.nlm.nih.gov/books/NBK574601/
4. Neyshaburinezhad N, Ghasim H, Rouini M, Daali Y, Ardakani YH. Frequency of Important CYP450 Enzyme Gene Polymorphisms in the Iranian Population in Comparison with Other Major Populations: A Comprehensive Review of the Human Data. J Pers Med. 2021 Aug 18;11(8):804. https://doi.org/10.3390/jpm11080804
5. Zhou Y, Ingelman-Sundberg M, Lauschke VM. Worldwide Distribution of Cytochrome P450 Alleles: A Meta-analysis of Population-scale Sequencing Projects. Clin Pharmacol Ther. 2017 Oct;102(4):688-700. https://doi.org/10.1002/cpt.690
6. Alali M, Ismail Al-Khalil W, Rijjal S, Al-Salhi L, Saifo M, Youssef LA. Frequencies of CYP2D6 genetic polymorphisms in Arab populations. Hum Genomics. 2022 Feb 5;16(1):6. https://doi.org/10.1186/s40246-022-00378-z
7. Becker D, Bharatam PV, Gohlke H. Molecular Mechanisms Underlying Single Nucleotide Polymorphism-Induced Reactivity Decrease in CYP2D6. J Chem Inf Model. 2024 Aug 12;64(15):6026-40. https://doi.org/10.1021/acs.jcim.4c00276
8. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013 Apr;138(1):103-41.  https://doi.org/10.1016/j.pharmthera.2012.12.007
9. Kiss ÁF, Tóth K, Juhász C, Temesvári M, Paulik J, Hirka G, et al. Is CYP2D6 phenotype predictable from CYP2D6 genotype? Microchemical Journal 2018; 136:209-14. https://doi.org/10.1016/j.microc.2016.10.018
10. Lymperopoulos A, McCrink KA, Brill A. Impact of CYP2D6 Genetic Variation on the Response of the Cardiovascular Patient to Carvedilol and Metoprolol. Curr Drug Metab. 2015;17(1):30-6. https://doi.org/10.2174/1389200217666151105125425
11. Hashemi-Soteh SM, Sarzare F, Merat F, Salehifar E, Shiran MR. Frequencies of three CYP2D6 nonfunctional alleles (CYP2D6*3, *4, and *6) within an Iranian population (Mazandaran). Genet Test Mol Biomarkers. 2011 Nov;15(11):821-5. https://doi.org/10.1089/gtmb.2011.0033
12. Gopisankar MG. CYP2D6 pharmacogenomics. Egyptian Journal of Medical Human Genetics 2017;18(4):309-13. https://doi.org/10.1016/j.ejmhg.2017.03.001
13. Haufroid V, Hantson P. CYP2D6 genetic polymorphisms and their relevance for poisoning due to amfetamines, opioid analgesics and antidepressants. Clin Toxicol (Phila). 2015 Jul;53(6):501-10. https://doi.org/10.3109/15563650.2015.1049355
14. Yang Y, Botton MR, Scott ER, Scott SA. Sequencing the CYP2D6 gene: from variant allele discovery to clinical pharmacogenetic testing. Pharmacogenomics. 2017 May;18(7):673-85. https://doi.org/10.2217/pgs-2017-0033
15. Collins JM, Lester H, Shabnaz S, Wang D. A frequent CYP2D6 variant promotes skipping of exon 3 and reduces CYP2D6 protein expression in human liver samples. Front Pharmacol. 2023 Jul 27;14:1186540. https://doi.org/10.3389/fphar.2023.1186540
16. Jin Y, Zhang S, Hu P, Zheng X, Guan X, Chen R, et al. The impact of CYP2D6*41 on CYP2D6 enzyme activity using phenotyping methods in urine, plasma, and saliva. Front Pharmacol. 2022 Aug 30;13:940510. https://doi.org/10.3389/fphar.2022.940510
17. Nofziger C, Turner AJ, Sangkuhl K, Whirl-Carrillo M, Agúndez JAG, Black JL, et al. PharmVar GeneFocus: CYP2D6. Clin Pharmacol Ther. 2020 Jan;107(1):154-70. https://doi.org/10.1002/cpt.1643
18. Polat SC, Batir MB, Cam FS. Allele and phenotype frequencies of CYP2D6 in the Turkish population. Ann Med Res. 2024;31(2):122-7.
19. Preissner SC, Hoffmann MF, Preissner R, Dunkel M, Gewiess A, Preissner S. Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy. PLoS One. 2013 Dec 10;8(12):e82562. https://doi.org/10.1371/journal.pone.0082562
20. Meloche M, Khazaka M, Kassem I, Barhdadi A, Dubé MP, de Denus S. CYP2D6 polymorphism and its impact on the clinical response to metoprolol: A systematic review and meta-analysis. Br J Clin Pharmacol. 2020 Jun;86(6):1015-33. https://doi.org/١٠.١١١١/bcp.١٤٢٤٧
21. Collett S, Massmann A, Petry NJ, Van Heukelom J, Schultz A, Hellwig T, Baye JF. Metoprolol and CYP2D6: A Retrospective Cohort Study Evaluating Genotype-Based Outcomes. J Pers Med. 2023 Feb 26;13(3):416. https://doi.org/10.3390/jpm13030416
22. Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020 Apr;16(4):223-37. https://doi.org/10.1038/s41581-019-0244-2
23. Chen J, Zheng J, Zhu Z, Hao B, Wang M, Li H, et al. Impact of the CYP2D6 Genotype on Metoprolol Tolerance and Adverse Events in Elderly Chinese Patients With Cardiovascular Diseases. Front Pharmacol. 2022 Apr 6;13:876392. https://doi.org/10.3389/fphar.2022.876392
24. Thomas CD, Mosley SA, Kim S, Lingineni K, El Rouby N, Langaee TY, et al. Examination of Metoprolol Pharmacokinetics and Pharmacodynamics Across CYP2D6 Genotype-Derived Activity Scores. CPT Pharmacometrics Syst Pharmacol. 2020 Dec;9(12):678-85. https://doi.org/10.1002/psp4.12563
25. Sheibaninia S, Houshmand M. The rapid and accurate genotyping assay of the main variants of five drug metabolizing genes. J Pharm Negat Results. 2022;13:8071-84. https://doi.org/10.47750/pnr.2022.13.S07.977
26. Frederiksen T. Using population pharmacokinetic analyses of drugs metabolized by CYP2D6 to study the genotype-phenotype translation. Basic Clin Pharmacol Toxicol. 2023 Aug;133(2):113-23. https://doi.org/10.1111/bcpt.13903
27. Bagheri A, Kamalidehghan B, Haghshenas M, Azadfar P, Akbari L, Sangtarash MH, et al. Prevalence of the CYP2D6*10 (C100T), *4 (G1846A), and *14 (G1758A) alleles among Iranians of different ethnicities. Drug Des Devel Ther. 2015 May 13;9:2627-34.  https://doi.org/10.2147/dddt.s79709
28. Khalaj Z, Baratieh Z, Nikpour P, Khanahmad H, Mokarian F, Salehi R, et al. Distribution of CYP2D6 polymorphism in the Middle Eastern region. J Res Med Sci. 2019 Jul 24;24:61. https://doi.org/10.4103/jrms.jrms_1076_18
29. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215.  https://doi.org/10.1093/nar/16.3.1215
30. Naveen AT, Adithan C, Soya SS, Gerard N, Krishnamoorthy R. CYP2D6 genetic polymorphism in South Indian populations. Biol Pharm Bull. 2006 Aug;29(8):1655-8. https://doi.org/10.1248/bpb.29.1655
31. Hinrichs JW, Smallegoor WD, van Baalen-Benedek EH, Welker C, van der Weide J. Detection of CYP2D6 polymorphisms *9, *10, and *41 using ARMS-PCR and their allelic frequencies in 400 psychiatric patients. Clin Chem Lab Med. 2007;45(4):555-7. https://doi.org/10.1515/cclm.2007.100
32. Del Tredici AL, Malhotra A, Dedek M, Espin F, Roach D, Zhu GD, et al. Frequency of CYP2D6 Alleles Including Structural Variants in the United States. Front Pharmacol. 2018 Apr 5;9:305. https://doi.org/10.3389/fphar.2018.00305
33. Kouhi H, Hamzeiy H, Barar J, Asadi M, Omidi Y. Frequency of five important CYP2D6 alleles within an Iranian population (Eastern Azerbaijan). Genet Test Mol Biomarkers. 2009 Oct;13(5):665-70. https://doi.org/10.1089/gtmb.2009.0009
34. Taylor C, Crosby I, Yip V, Maguire P, Pirmohamed M, Turner RM. A Review of the Important Role of CYP2D6 in Pharmacogenomics. Genes (Basel). 2020 Oct 30;11(11):1295. https://doi.org/10.3390/genes11111295