Open Access

Distribution of Cytochrome P450 2D6 (*4, *9, *10, *41) alleles in healthy population from north-west of Iran

Elahe Bagherinia¹, Amir Dehghani¹, Naser Khalili², Hamid Soraya³, Morteza Bagheri^{4*}

1- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran

2- Seyyed-al Shohada University Hospital, Urmia University of Medical Sciences, Urmia, Iran
3- Department of Pharmacology Toxicology, School of Pharmacy, Experimental and Applied
Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
4- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research
Institute, Urmia University of Medical Sciences, Urmia, Iran

Abstract

BACKGROUND: The CYP2D6 gene locus is complex and highly polymorphic. Given the clinical importance of the CYP2D6 enzyme in liver xenobiotic metabolism, genotyping its significant alleles among different ethnic groups is essential for evaluating the efficacy of certain drugs. In this study, we assessed the frequency of the *CYP2D6*4, *9, *10, and *41* alleles in a healthy population from northwestern Iran.

METHODS: Fifty unrelated healthy individuals from West Azerbaijan Province, Iran, were studied using PCR-RFLP and ARMS-PCR techniques.

RESULTS: *CYP2D6*9* (rs5030656) allele was not detected. The frequency (%) of *CYP2D6*4* (rs3892097), *CYP2D6*10* (rs1065852) and *CYP2D6*41* (rs28371725) alleles were 10%, 13% and 8%, respectively.

CONCLUSION: Our findings indicate that the frequencies of "non-functional" and "reduced function" alleles are relatively high in this population. Determining Cytochrome P450 2D6 allele variations can contribute to risk assessment and patient management regarding adverse or poor drug responses, ultimately aiding in the prevention of increased mortality risks among different populations.

Keywords: CYP2D6; Polymorphism; Iranian; Healthy Population; Allele Frequency

https://doi.org/10.48305/

arya.2025.42811.2980

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 Unported License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Correspondence:

Morteza Bagheri;

Email:

DOI:

Associate Professor, Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran;

mortezabagheri@umsu.ac.ir

Received: 2024.07.06 Accepted: 2025.03.16

How to cite this article:

Bagherinia E, Dehghani A, Khalili N, Soraya H, Bagheri M. Distribution of Cytochrome P450 2D6 (*4, *9, *10, *41) alleles in healthy population from north-west of Iran. ARYA Atheroscler. 2025; 21(2): 33-42.

Introduction

The cytochrome P450 (CYP) superfamily is a large and diverse group of enzymes found in living organisms, including eukaryotes and prokaryotes. These enzymes are named for their ability to absorb light at a wavelength of 450 nm when reduced and bound to carbon monoxide (CO)¹. *CYPs* are fundamental catalytic proteins involved in drug detoxification, facilitating oxidation reactions during phase I of drug metabolism².

Among the P450 enzymes, *CYP2D6* is one of the most extensively studied due to its crucial role in hepatic metabolism, processing approximately 25% of commonly used lipophilic drugs, including tricyclic antidepressants, chemotherapeutics, antipsychotics, betablockers, and many other essential medications³.

The *CYP2D6* gene family contains a large number of single nucleotide variants (SNVs), and the gene product plays a significant role in the biotransformation of xenobiotics^{4,5}. The human *CYP2D6* gene locus spans approximately 4.3 kilobase pairs (Kbp) on chromosome 22q13.2 and is encoded by nine exons¹. This gene is translated into the CYP2D6 protein, a heme-containing enzyme composed of 497 amino acids¹⁻⁶.

They are membrane-associated and accessible only through specific channels⁷. Although CYP enzymes are expressed in various organs, such as the kidneys, gonads, adrenal glands, and others, they are primarily localized in the endoplasmic reticulum of the liver and intestines². They are also found in neuronal cells within the brain⁸.

Due to genetic polymorphisms, hepatic *CYP2D6* protein levels vary significantly among populations worldwide⁹. More than 100 variant alleles of the *CYP2D6* gene have been identified to date, highlighting its considerable genetic variability. While many of these variants are rare, several polymorphisms alter enzyme function—rendering it inactive or affecting enzymatic activity by either increasing or decreasing its efficiency^{10,11}.

Approximately 109 distinct CYP2D6 alleles

and nearly 507 SNPs have been identified, with about 10% classified as nonsynonymous, meaning they modify the enzyme's structure and function. These polymorphisms arise from point mutations, deletions, insertions, gene rearrangements, or full-gene duplications¹².

CYP2D6 alleles are categorized into three functional classes: normal function, nonfunctional, and reduced function alleles¹³. These variant "star (*) *alleles" are documented in the Human CYP450 Allele Nomenclature Database*¹⁴. *CYP2D6*1 is the reference allele, signifying normal enzyme activity. Several other alleles, such as *2, exhibit similar functionality to the reference allele³. Other commonly identified CYP2D6 alleles include *3, *4, *9, *10, *17, *29, and *41¹⁵.

According to the classification of CYP2D6 alleles, *1 and *2 are normal function alleles, *3 and *4 are non-functional, while *9, *10, *17, 29, and 41 are categorized as reduced function alleles¹³. Each individual carries two CYP2D6 haplotypes one on each chromosome which together form a diplotype. For example, the CYP2D64/41 diplotype indicates that one chromosome carries the polymorphisms associated with CYP2D64, while the other chromosome carries the polymorphisms linked to CYP2D641.

The term "genotype" is often used interchangeably with "diplotype" when characterizing an individual's genetic profile for the CYP2D6 gene. Based on an individual's CYP2D6 genotype, four distinct CYP2D6 metabolism phenotypes can be identified: ultrarapid metabolizer (UM), normal metabolizer (extensive metabolizer, NM or EM), intermediate metabolizer (IM), and PM^{16,17}.

Individuals with PM, IM, and UM phenotypes may experience pharmacokinetic variations compared to normal metabolizers due to differences in the CYP2D6 enzyme gene¹⁸. PMs either lack catalytic enzyme activity or possess two non-functional alleles, preventing them from effectively metabolizing or bioactivating drugs through the CYP2D6 pathway⁹. Consequently, PMs are prone to adverse drug effects and treatment failures due to increased plasma drug levels. Conversely, UMs possess multiple functional alleles, leading to increased enzymatic activity, which can also present challenges^{12,18}.

Among the global population, the most prevalent CYP2D6 phenotype is the NM, accounting for approximately 78% of individuals, followed by IM phenotypes (12%) and PM phenotypes (8%). Ultrarapid metabolizers represent the smallest percentage of the population¹⁹. According to previous research, PM phenotypes are predominantly found in European populations, UM phenotypes are more common among North African individuals, and IM phenotypes are frequently observed in Asian populations¹².

CYP2D6 gene polymorphisms can result in metabolic function ranging from absent to increased activity, impacting drug metabolism and pharmacokinetic profiles across various drug classes, including beta-blockers²⁰.

Up to 80% of the hepatic metabolism of the beta1-blocker drug metoprolol is mediated by *CYP2D6* enzymes, with a smaller portion processed by CYP3A4²¹. Beta1-blocker drugs are widely used in the treatment of various cardiovascular diseases, including hypertension and other heart conditions, which are leading causes of early mortality and rising healthcare costs globally²².

Determining a patient's *CYP2D6* genotype is a rational approach to mitigating the risk of adverse drug events (e.g., bradycardia, hypotension, or weakness) while maximizing the therapeutic benefits of beta-blockers²³. As clinical pharmacogenetic testing becomes more widely available, selecting an appropriate strategy for predicting *CYP2D6* phenotypes is crucial for optimizing drug responses and determining the most effective dosage in treatment plans²⁴.

Since pharmacogenetics-guided therapeutic recommendations are based on *CYP2D6* phenotypes, translating genotype data into clinically relevant phenotypes is an efficient method for shaping medical treatment strategies²³. Pharmacogenetics examines the influence of genetic variations on drug response, acknowledging that medication effects can differ among individuals²⁵. Furthermore, calculating CYP2D6 enzymatic function based on diplotype analysis can help personalize medication strategies. The activity score system was introduced in recent years to facilitate CYP2D6 genotype-to-phenotype translation²⁶.

According to allele function, each allele is assigned a value to estimate enzyme activity within the activity score (AS) system. In this system, non-functional alleles (e.g., CYP2D64, 5) are assigned a value of 0, while decreased function alleles receive a value of either 0.25 (e.g., CYP2D610) or 0.5 (e.g., CYP2D69, *17, 41). Extensive function alleles (e.g., CYP2D62) are assigned a value of 1, whereas increased function alleles are allocated a value of 2 or higher, depending on the number of gene copies ^{3,26}.

The AS system is used clinically to predict CYP2D6 metabolizer enzyme phenotypes. Poor metabolizers have an AS of 0, while ultrarapid metabolizers are characterized by an AS > 2.25^{24} . Additionally, normal (extensive) metabolizers have an activity score between 1.25 and 2.25, while intermediate metabolizers fall within a range of 0.25 to 1.3.

Several key CYP2D6 alleles are described as follows:

• **CYP2D6*4 (rs3892097):** This allele results from a splicing defect that leads to non-functional enzyme activity due to the substitution of guanine (G) with adenine (A) at position 1846. This single base change alters the consensus acceptor splice site, producing a spliced mRNA with an extra base²⁷.

• **CYP2D6*9** (**rs5030656**): This allele is characterized by the deletion of the K281 amino acid due to a three-base-pair deletion (AAG codon) in exon 4 at positions 2615–2617. This polymorphism leads to reduced or nonfunctional CYP2D6 enzyme activity²⁵. It has a low prevalence in global populations, with a frequency ranging from 1% to 2%²⁶.

• **CYP2D6*10 (rs1065852):** This allele arises from a cytosine (C) to thymine (T) substitution

at nucleotide 100, resulting in the replacement of proline with serine at codon 34. This polymorphism is prevalent among Asians and is associated with reduced CYP2D6 enzyme metabolism²⁷. The *10 allele frequency is 43% in East Asians, 20% in Central and South Asians, and up to 7% in other populations²⁶.

• **CYP2D6*41 (rs28371725):** This allele is caused by the substitution of guanine (G) with adenine (A) at position 2988 in intron 6, leading to aberrant mRNA splicing. The resulting enzyme has reduced metabolic function²⁵. This single nucleotide variant (SNV) is the most abundant reduced function CYP2D6 allele in European populations, with a frequency of up to 7%²⁶.

Given the impact of CYP2D6 enzyme activity on drug metabolism, evaluating allele frequencies in different populations is essential for understanding genetic variations across ethnic groups²⁸. Previous studies have explored the frequency of various CYP2D6 polymorphisms, providing valuable insights into interethnic differences. However, the significance of these studies is somewhat limited due to small sample sizes⁵.

Additionally, comparative data on CYP2D6 allele frequencies among different Iranian population groups remain limited¹¹. Given the significant influence of CYP2D6 genotypes on catalytic protein activity and hepatic drug metabolism, determining allele frequencies across diverse populations is crucial for advancing genotype-guided drug response predictions⁶.

For individuals concerned about CYP2D6 metabolism, genetic testing provides valuable information to guide drug dosage adjustments ³.

The aim of this study was to assess the allelic frequency of Cytochrome P450 2D6 (*4, *9, *10, *41) alleles in a healthy population from northwestern Iran.

Materials and Methods

Subject group and DNA extraction method Agroupoffifty unrelated healthy individuals (aged 18–60) from West Azerbaijan Province, Iran, was included in our study. Venous blood samples (3–4 mL) were obtained from each participant and collected into tubes containing 500 μ L of 0.5 mM EDTA (ethylenediaminetetraacetic acid). Genomic DNA was extracted using the saltingout method²⁹.

Primers sequences and genotyping method

Details on primers, PCR conditions, and methods used for allele investigation are provided in Table 1^{30,31}.

PCR reactions were performed in a 30 μ L volume, consisting of 50 ng of DNA, 1× reaction buffer, 10 pmol of each primer, 200 μ mol of each dNTP, 0.2 units of Taq DNA polymerase, and 1.5 mmol MgCl₂. The amplified PCR products were digested using 0.5 μ L of Thermo ScientificTM ER0551 Mval (BstNI) restriction enzyme (10 U/ μ L) at 37°C for 2 hours, specifically for the CYP2D6*4 allele.

Fragment analysis was conducted via electrophoresis on a 2% agarose gel stained with 0.2 μL of CinnaGen DNA Safe Stain (CinnaGen Co., Tehran, Iran).

Statistical Analysis

Allele and genotype frequencies were determined using the counting method and tested for Hardy-Weinberg equilibrium. All frequencies were expressed as percentages. A chi-square test was performed to compare frequency distributions between populations, with a p-value < 0.05 considered statistically significant

Results

Representative images of agarose gel electrophoresis for CYP2D64, CYP2D69, CYP2D610, and CYP2D641 alleles are shown in Figures 1-4. Genotype frequencies were counted and calculated based on the total number of samples.

Overall, among the study population, CYP2D69 had the lowest frequency (0%), while CYP2D610 was the most abundant allele (13%), followed by CYP2D64 (10%) and CYP2D641 (8%).

The most prevalent phenotype observed in this research was Intermediate Metabolizer (IM), with **12% of cases exhibiting the CYP2D64/10

Allele	Primers	PCR conditions	Method	Pattern of alleles after gel electrophoresis
<i>CYP2D6*4</i>	f: 5'–tgccgccttcgccaaccact–3' r: 5'–tcgccctgcagagactcctc–3'	94 °C/8 min 62 °C/2 min 30×72 °C/30 s 94 °C/30 s 62 °C/20 s 72 °C/5 min 22 °C/1 min	PCR-RFLP Using BstNI 37°C/2h	Wild-type/Wild-type: 201+108 bps Wild-type/Mutant-type: 309+201+108 bps Mutant-type/Mutant-type: 309 bp
<i>CYP2D6*9</i>	out f: 5'-caggtgaacgcagagcacag-3' out r: 5'-ccggatgtaggatcatgagc-3' wt f: 5'-ttcctggcagagatggagaa-3' *9 f: 5'-ttcctggcagagatggaggt-3'	95°C/5 min 95°C/30 s Wild-type: 30×61°C/30 s Mutant-type: 31×60°C/30 s 72°C/1 min 72°C/10 min 95°C/5 min	ARMS-PCR	Internal control: 549 bp Mutant-type: 341 bp Wild-type: 341 bp
CYP2D6*10	out f: 5'-ggggcaagaacctctggagc-3' out r: 5'-ctggtccagcctgtggtttc-3' wt r: 5'-agtggcagggggcctggagg-3' *10 f: 5'-acgctgggctgcacgcttct-3'	$95^{\circ}C/30 \text{ s}$ Wild-type: $32 \times 67^{\circ}C/30 \text{ s}$ Mutant-type: $29 \times 60^{\circ}C/30 \text{ s}$ $72^{\circ}C/1 \text{ min}$ $72^{\circ}C/10 \text{ min}$ $95^{\circ}C/5 \text{ min}$	ARMS-PCR	Internal control: 505 bp Mutant-type:192 bp Wild-type: 351 bp
CYP2D6*41	out f: 5'-ccgttctgtcccgagtatgc-3' out r: 5'-cggccctgacactccttctt-3' wt f: 5'-agtgcaggggccgagggtgg-3' *41 f: 5'-agtgcaggggccgagggcga-3'	95°C/30 s Both wild/ mutant type: 32×65.5°C/30 s 72°C/1 min 72°C/10 min	ARMS-PCR	Internal control: 339 bp Mutant-type: 142 bp Wild-type: 142 bp

Table 1. Primers and PCRs conditions of tested alleles in this study

Figure 1. CYP2D6*4 allele in our samples

M: 100 bp DNA ladder. w/m: heterozygous sample for mutant allele of *CYP2D6*4* (201bp+108 bp+309 bp); w/w: homozygous sample for normal allele of *CYP2D6*4* (201bp+108 bp)

Figure 2. CYP2D6*9 allele in our samples

M: 100 bp DNA ladder. Homozygous samples for normal allele of *CYP2D6*9* (341bp+549 bp) (left); Mutant allele of *CYP2D6*9 was not found in this study* (549 bp: internal control without 341 bp) (right)

M: 100 bp DNA ladder. Lane 1: a samples with normal allele of CYP2D6*41 (142bp+339 bp) (left); Lane 2: a sample without mutant allele of CYP2D6*41; Lane 3: a sample with mutant allele of CYP2D6*41(right) Normal/mutant allele: 142 bp and internal control: 339 bp

genotype. Additionally, **2% of cases carried the CYP2D64/41 *genotype*, and **homozygous CYP2D610/10 and CYP2D641/41 genotypes

were identified in 2% of tested samples. No homozygous sample for the mutant allele CYP2D6*4 was detected in this study.

Discussion

In this study, we examined the CYP2D6*4, *9*, *10*, and *41* alleles in a healthy population from northwest Iran. Our findings indicated that the allelic frequency of **CYP2D69 (rs5030656) was zero. Additionally, the frequencies of CYP2D64 (*rs3892097*), *CYP2D6*10 (rs1065852), and CYP2D6*41 (rs28371725) were 10%, 13%, and 8%, respectively.

Our results suggest that non-functional and reduced-functionallelesaremore prevalent in this population. To contextualize these findings, we compared the allele frequencies of **CYP2D6*4, *9, *10, and 41* from this study with those reported in other populations (Tables 2 and 3).

The results indicate that allele frequencies in our study differ from those observed in several Asian populations.

Among the most frequently detected alleles in this study were **CYP2D64 and 10. The frequency of the CYP2D6*41 reduced-function allele was similar among Caucasians¹⁹, the United States³², and this study, while it varied in African⁵ and European⁵ populations. Conversely, CYP2D6*41 was found to be more frequent in Turkey¹⁸.

The CYP2D6*4 allele exhibits a distinct distribution pattern between Iranian and Caucasian populations; however, it remains one of the most prevalent alleles among Caucasians. The distribution of CYP2D6*4 was similar among Iranian, African, and Turkish populations.

The Chinese population¹³ exhibits the lowest frequency of CYP2D6*4, in contrast to other global populations. The frequencies of CYP2D6*4 among European and United States populations are relatively similar. The frequency of CYP2D6*10 in our study closely resembles that found in South Indian populations³⁰. Notably, CYP2D6*10 was absent in European populations ¹³, but is one of the most prevalent alleles in Chinese populations. Among United States populations, CYP2D6*10, a reducedfunction allele, has a low frequency of under 2%.

The CYP2D6*9 allele was absent (0%) in the Iranian population, similar to findings in African⁵ and Chinese¹³ populations. Generally, CYP2D6*9 is a relatively rare allele across populations.

Table 3 presents the allele frequencies

Allele	Turkey (%) ¹⁸	Cauca sians (%) ¹⁹	South Indians (%) ³⁰	Africans (%) ⁵	Europeans (%) ⁵	Chinese (%) ¹³	US(%) ³ 2	West Azerbaijan of Iran (%)
*4	9.85	20.7	7.3	11.9	15.5	<1	16.1	10.0
*9	ND	2.0	ND	0.4	1.6	<1	2.4	0.0
*10	ND	8.0	10.2	3.2	0.2	60	1.7	13.0
*41	15.15	8.0	ND	3.0	3.0	ND	8.2	8.0

Table 2. Comparison of CYP2D6 allelic frequen	cy among Iranian and	some other major	populations
--	----------------------	------------------	-------------

ND: Not Determined

able 3. Comparison of CYP2D6 allelic frequence	y between our results and the other Iranian groups
--	--

Allele	Neyshaburinezhad et al ⁴	Kouhi et al ³³	Bagheri et al ²⁷	Our study
CYP2D6*4	11.2%	12.5%	0%	10.0%
<i>CYP2D6*9</i>	ND	ND	ND	0%
CYP2D6*10	15.10%	9.0%	31.9%	13.0%
CYP2D6*41	14%	ND	ND	8.0%
ND: Not Determined				

of CYP2D6 among different Iranian ethnic groups. Notably, CYP2D6*4 was not detected in populations such as Fars, Lure, Kurd, and Mazani, which contrasts with our findings²⁷. However, the frequency of CYP2D6*10 in this study aligns with previous studies, with rates reaching up to 32%. In contrast, the study by Kouhi et al. ³³. reported a CYP2D6*10 frequency lower than 10%, contradicting other studies.

Our results are consistent with findings from Neyshaburinezhad et al.⁴, where CYP2D6*10 was one of the most frequent alleles. The high prevalence of homozygous T/T CYP2D6*10 in Iranian groups suggests a predisposition to adverse or poor drug responses, potentially increasing the risk of mortality.

CYP2D6 is a clinically significant pharmacogene involved in the metabolism of approximately 25% of commonly prescribed drugs across various medical disciplines. It is highly polymorphic, with numerous genetic variants that exhibit populationspecific distributions and significantly influence its drug-metabolizing enzymatic activity.

Research indicates that CYP2D6 and its polymorphisms play a vital role in personalized dosing strategies for CYP2D6 drug substrates, particularly in opioid therapy, psychiatry, oncology, and cardiology³⁴. Consequently, identifying individuals with altered pharmacokinetics for CYP2D6 substrates is essential to prevent adverse drug reactions.

Evaluating CYP2D6 polymorphisms in different ethnic populations provides valuable insights into personalized medicine and facilitates comparisons of pharmacogenetic variations across ethnic groups. Genetic testing to detect CYP2D6 alleles is a fundamental step in minimizing drug-related adverse effects.

This investigation serves as a pilot study and represents the findings of a master's thesis.At future, it is necessary to pay attention to more details including number of samples and the other CYP2D6 alleles.

Conclusion

Our findings demonstrated that the CYP2D6*9 allele had the lowest frequency. The most

abundant alleles were *CYP2D6*10,* followed by CYP2D6*4 and *CYP2D6*41,* respectively. The most prevalent phenotype observed in our study was Intermediate Metabolizer (IM).

Acknowledgements

We extend our sincere appreciation to all individuals who contributed to this investigation.

Conflict of interests

The authors declare no conflict of interest.

Funding

There is no funding in this study.

Author's Contributions

Study Conception or Design: EB, AD, HS, MB Data Acquisition: EB, NK, HS, MB Data Analysis or Interpretation: EB, MB Manuscript Drafting: EB, MB Critical Manuscript Revision: AD, NK, HS, MB All authors have approved the final manuscript and are responsible for all aspects of the work.

References

- Taylor C, Crosby I, Yip V, Maguire P, Pirmohamed M, Turner RM. A Review of the Important Role of CYP2D6 in Pharmacogenomics. Genes (Basel). 2020 Oct 30;11(11):1295. https://doi. org/10.3390/genes1111295
- Yovinska S, Bakalov D, Mihova K, Kamenarova K, Kaneva R, Nikolov R, et al. Genetic Polymorphisms in CYP2 Gene Family in Bulgarian Individuals and their Clinical Implications. Acta Medica Bulgarica 2024; 51(1):1-7. https://doi.org/10.2478/amb-2024-0001
- Kane M. CYP2D6 overview: allele and phenotype frequencies. InMedical Genetics Summaries [Internet] 2021 Oct 15. National Center for Biotechnology Information (US). Available from: https://www.ncbi.nlm.nih.gov/books/ NBK574601/
- Neyshaburinezhad N, Ghasim H, Rouini M, Daali Y, Ardakani YH. Frequency of Important CYP450 Enzyme Gene Polymorphisms in the Iranian Population in Comparison with Other Major Populations: A Comprehensive Review of the Human Data. J Pers Med. 2021 Aug 18;11(8):804. https://doi.org/10.3390/ jpm11080804
- 5. Zhou Y, Ingelman-Sundberg M, Lauschke VM.

Worldwide Distribution of Cytochrome P450 Alleles: A Meta-analysis of Population-scale Sequencing Projects. Clin Pharmacol Ther. 2017 Oct;102(4):688-700. https://doi.org/10.1002/ cpt.690

- Alali M, Ismail Al-Khalil W, Rijjal S, Al-Salhi L, Saifo M, Youssef LA. Frequencies of CYP2D6 genetic polymorphisms in Arab populations. Hum Genomics. 2022 Feb 5;16(1):6. https://doi. org/10.1186/s40246-022-00378-z
- Becker D, Bharatam PV, Gohlke H. Molecular Mechanisms Underlying Single Nucleotide Polymorphism-Induced Reactivity Decrease in CYP2D6. J Chem Inf Model. 2024 Aug 12;64(15):6026-40. https://doi.org/10.1021/acs. jcim.4c00276
- Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013 Apr;138(1):103-41. https:// doi.org/10.1016/j.pharmthera.2012.12.007
- Kiss ÁF, Tóth K, Juhász C, Temesvári M, Paulik J, Hirka G, et al. Is CYP2D6 phenotype predictable from CYP2D6 genotype? Microchemical Journal 2018; 136:209-14. https://doi.org/10.1016/j. microc.2016.10.018
- Lymperopoulos A, McCrink KA, Brill A. Impact of CYP2D6 Genetic Variation on the Response of the Cardiovascular Patient to Carvedilol and Metoprolol. Curr Drug Metab. 2015;17(1):30-6. https://doi.org/10.2174/13892002176661511051 25425
- Hashemi-Soteh SM, Sarzare F, Merat F, Salehifar E, Shiran MR. Frequencies of three CYP2D6 nonfunctional alleles (CYP2D6*3, *4, and *6) within an Iranian population (Mazandaran). Genet Test Mol Biomarkers. 2011 Nov;15(11):821-5. https://doi.org/10.1089/gtmb.2011.0033
- 12. Gopisankar MG. CYP2D6 pharmacogenomics. Egyptian Journal of Medical Human Genetics 2017;18(4):309-13. https://doi.org/10.1016/j. ejmhg.2017.03.001
- Haufroid V, Hantson P. CYP2D6 genetic polymorphisms and their relevance for poisoning due to amfetamines, opioid analgesics and antidepressants. Clin Toxicol (Phila). 2015 Jul;53(6):501-10. https://doi.org/10.3109/155636 50.2015.1049355
- Yang Y, Botton MR, Scott ER, Scott SA. Sequencing the CYP2D6 gene: from variant allele discovery to clinical pharmacogenetic testing. Pharmacogenomics. 2017 May;18(7):673-85. https://doi.org/10.2217/pgs-2017-0033
- 15. Collins JM, Lester H, Shabnaz S, Wang D. A frequent CYP2D6 variant promotes skipping of

exon 3 and reduces CYP2D6 protein expression in human liver samples. Front Pharmacol. 2023 Jul 27;14:1186540. https://doi.org/10.3389/ fphar.2023.1186540

- 16. Jin Y, Zhang S, Hu P, Zheng X, Guan X, Chen R, et al. The impact of CYP2D6*41 on CYP2D6 enzyme activity using phenotyping methods in urine, plasma, and saliva. Front Pharmacol. 2022 Aug 30;13:940510. https://doi.org/10.3389/ fphar.2022.940510
- Nofziger C, Turner AJ, Sangkuhl K, Whirl-Carrillo M, Agúndez JAG, Black JL, et al. PharmVar GeneFocus: CYP2D6. Clin Pharmacol Ther. 2020 Jan;107(1):154-70. https://doi.org/10.1002/cpt.1643
- Polat SC, Batir MB, Cam FS. Allele and phenotype frequencies of CYP2D6 in the Turkish population. Ann Med Res. 2024;31(2):122-7.
- Preissner SC, Hoffmann MF, Preissner R, Dunkel M, Gewiess A, Preissner S. Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy. PLoS One. 2013 Dec 10;8(12):e82562. https://doi.org/10.1371/journal.pone.0082562
- Meloche M, Khazaka M, Kassem I, Barhdadi A, Dubé MP, de Denus S. CYP2D6 polymorphism and its impact on the clinical response to metoprolol: A systematic review and meta-analysis. Br J Clin Pharmacol. 2020 Jun;86(6):1015-33. https://doi. org/10.1111/bcp.14247
- Collett S, Massmann A, Petry NJ, Van Heukelom J, Schultz A, Hellwig T, Baye JF. Metoprolol and CYP2D6: A Retrospective Cohort Study Evaluating Genotype-Based Outcomes. J Pers Med. 2023 Feb 26;13(3):416. https://doi.org/10.3390/ jpm13030416
- 22. Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020 Apr;16(4):223-37. https://doi.org/10.1038/ s41581-019-0244-2
- Chen J, Zheng J, Zhu Z, Hao B, Wang M, Li H, et al. Impact of the CYP2D6 Genotype on Metoprolol Tolerance and Adverse Events in Elderly Chinese Patients With Cardiovascular Diseases. Front Pharmacol. 2022 Apr 6;13:876392. https://doi. org/10.3389/fphar.2022.876392
- Thomas CD, Mosley SA, Kim S, Lingineni K, El Rouby N, Langaee TY, et al. Examination of Metoprolol Pharmacokinetics and Pharmacodynamics Across CYP2D6 Genotype-Derived Activity Scores. CPT Pharmacometrics Syst Pharmacol. 2020 Dec;9(12):678-85. https://doi.org/10.1002/ psp4.12563
- Sheibaninia S, Houshmand M. The rapid and accurate genotyping assay of the main variants of five drug metabolizing genes. J Pharm Negat Results. 2022;13:8071-84. https://doi.

org/10.47750/pnr.2022.13.S07.977

- Frederiksen T. Using population pharmacokinetic analyses of drugs metabolized by CYP2D6 to study the genotype-phenotype translation. Basic Clin Pharmacol Toxicol. 2023 Aug;133(2):113-23. https://doi.org/10.1111/bcpt.13903
- Bagheri A, Kamalidehghan B, Haghshenas M, Azadfar P, Akbari L, Sangtarash MH, et al. Prevalence of the CYP2D6*10 (C100T), *4 (G1846A), and *14 (G1758A) alleles among Iranians of different ethnicities. Drug Des Devel Ther. 2015 May 13;9:2627-34. https:// doi.org/10.2147/dddt.s79709
- Khalaj Z, Baratieh Z, Nikpour P, Khanahmad H, Mokarian F, Salehi R, et al. Distribution of CYP2D6 polymorphism in the Middle Eastern region. J Res Med Sci. 2019 Jul 24;24:61. https://doi. org/10.4103/jrms.jrms_1076_18
- Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215. https://doi.org/10.1093/ nar/16.3.1215
- 30. Naveen AT, Adithan C, Soya SS, Gerard N, Krishnamoorthy R. CYP2D6 genetic polymorphism

in South Indian populations. Biol Pharm Bull. 2006 Aug;29(8):1655-8. https://doi.org/10.1248/ bpb.29.1655

- 31. Hinrichs JW, Smallegoor WD, van Baalen-Benedek EH, Welker C, van der Weide J. Detection of CYP2D6 polymorphisms *9, *10, and *41 using ARMS-PCR and their allelic frequencies in 400 psychiatric patients. Clin Chem Lab Med. 2007;45(4):555-7. https://doi.org/10.1515/cclm.2007.100
- Del Tredici AL, Malhotra A, Dedek M, Espin F, Roach D, Zhu GD, et al. Frequency of CYP2D6 Alleles Including Structural Variants in the United States. Front Pharmacol. 2018 Apr 5;9:305. https://doi. org/10.3389/fphar.2018.00305
- Kouhi H, Hamzeiy H, Barar J, Asadi M, Omidi Y. Frequency of five important CYP2D6 alleles within an Iranian population (Eastern Azerbaijan). Genet Test Mol Biomarkers. 2009 Oct;13(5):665-70. https://doi.org/10.1089/gtmb.2009.0009
- Taylor C, Crosby I, Yip V, Maguire P, Pirmohamed M, Turner RM. A Review of the Important Role of CYP2D6 in Pharmacogenomics. Genes (Basel). 2020 Oct 30;11(11):1295. https://doi. org/10.3390/genes1111295