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Abstract
BACKGROUND: The CYP2D6 gene locus is complex and highly polymorphic. Given the 
clinical importance of the CYP2D6 enzyme in liver xenobiotic metabolism, genotyping its 
significant alleles among different ethnic groups is essential for evaluating the efficacy 
of certain drugs. In this study, we assessed the frequency of the CYP2D6*4, *9, *10, and 
*41 alleles in a healthy population from northwestern Iran.

METHODS: Fifty unrelated healthy individuals from West Azerbaijan Province, Iran, were 
studied using PCR-RFLP and ARMS-PCR techniques.

RESULTS: CYP2D6*9 (rs5030656) allele was not detected. The frequency (%) of CYP2D6*4 
(rs3892097), CYP2D6*10 (rs1065852) and CYP2D6*41 (rs28371725) alleles were 10%, 
13% and 8%, respectively. 

CONCLUSION: Our findings indicate that the frequencies of “non-functional” and 
“reduced function” alleles are relatively high in this population. Determining Cytochrome 
P450 2D6 allele variations can contribute to risk assessment and patient management 
regarding adverse or poor drug responses, ultimately aiding in the prevention of 
increased mortality risks among different populations.
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Introduction
The cytochrome P450 (CYP) superfamily is a 
large and diverse group of enzymes found in 
living organisms, including eukaryotes and 
prokaryotes. These enzymes are named for their 
ability to absorb light at a wavelength of 450 nm 
when reduced and bound to carbon monoxide 
(CO)1. CYPs are fundamental catalytic proteins 
involved in drug detoxification, facilitating 
oxidation reactions during phase I of drug 
metabolism2.

Among the P450 enzymes, CYP2D6 is one 
of the most extensively studied due to its 
crucial role in hepatic metabolism, processing 
approximately 25% of commonly used lipophilic 
drugs, including tricyclic antidepressants, 
chemotherapeutics, antipsychotics, beta-
blockers, and many other essential medications 3. 
   The CYP2D6 gene family contains a large 
number of single nucleotide variants (SNVs), and 
the gene product plays a significant role in the 
biotransformation of xenobiotics4,5. The human 
CYP2D6 gene locus spans approximately 4.3 
kilobase pairs (Kbp) on chromosome 22q13.2 
and is encoded by nine exons1. This gene is 
translated into the CYP2D6 protein, a heme-
containing enzyme composed of 497 amino 
acids1-6.

They are membrane-associated and 
accessible only through specific channels7. 
Although CYP enzymes are expressed in various 
organs, such as the kidneys, gonads, adrenal 
glands, and others, they are primarily localized 
in the endoplasmic reticulum of the liver and 
intestines2. They are also found in neuronal cells 
within the brain8.

Due to genetic polymorphisms, hepatic 
CYP2D6 protein levels vary significantly among 
populations worldwide9. More than 100 variant 
alleles of the CYP2D6 gene have been identified 
to date, highlighting its considerable genetic 
variability. While many of these variants are rare, 
several polymorphisms alter enzyme function—
rendering it inactive or affecting enzymatic 
activity by either increasing or decreasing its 
efficiency10,11.

Approximately 109 distinct CYP2D6 alleles 

and nearly 507 SNPs have been identified, 
with about 10% classified as nonsynonymous, 
meaning they modify the enzyme’s structure 
and function. These polymorphisms arise from 
point mutations, deletions, insertions, gene 
rearrangements, or full-gene duplications12.

CYP2D6 alleles are categorized into three 
functional classes: normal function, non-
functional, and reduced function alleles13. These 
variant “star (*) alleles” are documented in the 
Human CYP450 Allele Nomenclature Database14. 
CYP2D61 is the reference allele, signifying 
normal enzyme activity. Several other alleles, 
such as *2, exhibit similar functionality to the 
reference allele3. Other commonly identified 
CYP2D6 alleles include *3, *4, *9, *10, *17, *29, 
and *4115.

According to the classification of CYP2D6 
alleles, *1 and *2 are normal function alleles, 
*3 and *4 are non-functional, while *9, *10, 
*17, 29, and 41 are categorized as reduced 
function alleles13. Each individual carries two 
CYP2D6 haplotypes one on each chromosome 
which together form a diplotype. For example, 
the CYP2D64/41 diplotype indicates that 
one chromosome carries the polymorphisms 
associated with CYP2D64, while the other 
chromosome carries the polymorphisms linked 
to CYP2D641.

 The term “genotype” is often used 
interchangeably with “diplotype” when 
characterizing an individual’s genetic profile 
for the CYP2D6 gene. Based on an individual’s 
CYP2D6 genotype, four distinct CYP2D6 
metabolism phenotypes can be identified: 
ultrarapid metabolizer (UM), normal metabolizer 
(extensive metabolizer, NM or EM), intermediate 
metabolizer (IM), and PM16,17.

Individuals with PM, IM, and UM phenotypes 
may experience pharmacokinetic variations 
compared to normal metabolizers due to 
differences in the CYP2D6 enzyme gene18. PMs 
either lack catalytic enzyme activity or possess 
two non-functional alleles, preventing them 
from effectively metabolizing or bioactivating 
drugs through the CYP2D6 pathway9. 
Consequently, PMs are prone to adverse drug 
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effects and treatment failures due to increased 
plasma drug levels. Conversely, UMs possess 
multiple functional alleles, leading to increased 
enzymatic activity, which can also present 
challenges12,18.

Among the global population, the most 
prevalent CYP2D6 phenotype is the NM, 
accounting for approximately 78% of individuals, 
followed by IM phenotypes (12%) and PM 
phenotypes (8%). Ultrarapid metabolizers 
represent the smallest percentage of the 
population19. According to previous research, 
PM phenotypes are predominantly found in 
European populations, UM phenotypes are 
more common among North African individuals, 
and IM phenotypes are frequently observed in 
Asian populations12.

CYP2D6 gene polymorphisms can result 
in metabolic function ranging from absent to 
increased activity, impacting drug metabolism 
and pharmacokinetic profiles across various 
drug classes, including beta-blockers20.

Up to 80% of the hepatic metabolism of 
the beta1-blocker drug metoprolol is mediated 
by CYP2D6 enzymes, with a smaller portion 
processed by CYP3A421. Beta1-blocker drugs 
are widely used in the treatment of various 
cardiovascular diseases, including hypertension 
and other heart conditions, which are leading 
causes of early mortality and rising healthcare 
costs globally22.

Determining a patient’s CYP2D6 genotype 
is a rational approach to mitigating the risk 
of adverse drug events (e.g., bradycardia, 
hypotension, or weakness) while maximizing 
the therapeutic benefits of beta-blockers23. 
As clinical pharmacogenetic testing becomes 
more widely available, selecting an appropriate 
strategy for predicting CYP2D6 phenotypes 
is crucial for optimizing drug responses and 
determining the most effective dosage in 
treatment plans24.

Since pharmacogenetics-guided therapeutic 
recommendations are based on CYP2D6 
phenotypes, translating genotype data into 
clinically relevant phenotypes is an efficient 
method for shaping medical treatment 

strategies23. Pharmacogenetics examines the 
influence of genetic variations on drug response, 
acknowledging that medication effects can differ 
among individuals25. Furthermore, calculating 
CYP2D6 enzymatic function based on diplotype 
analysis can help personalize medication 
strategies. The activity score system was 
introduced in recent years to facilitate CYP2D6 
genotype-to-phenotype translation26.

According to allele function, each allele is 
assigned a value to estimate enzyme activity 
within the activity score (AS) system. In this 
system, non-functional alleles (e.g., CYP2D64, 
5) are assigned a value of 0, while decreased 
function alleles receive a value of either 0.25 
(e.g., CYP2D610) or 0.5 (e.g., CYP2D69, *17, 41). 
Extensive function alleles (e.g., CYP2D62) are 
assigned a value of 1, whereas increased function 
alleles are allocated a value of 2 or higher, 
depending on the number of gene copies 3,26. 
   The AS system is used clinically to predict 
CYP2D6 metabolizer enzyme phenotypes. Poor 
metabolizers have an AS of 0, while ultrarapid 
metabolizers are characterized by an AS > 2.2524. 
Additionally, normal (extensive) metabolizers 
have an activity score between 1.25 and 2.25, 
while intermediate metabolizers fall within a 
range of 0.25 to 1.3.

Several key CYP2D6 alleles are described as 
follows:

• CYP2D6*4 (rs3892097): This allele results 
from a splicing defect that leads to non-functional 
enzyme activity due to the substitution of 
guanine (G) with adenine (A) at position 1846. 
This single base change alters the consensus 
acceptor splice site, producing a spliced mRNA 
with an extra base27.

• CYP2D6*9 (rs5030656): This allele is 
characterized by the deletion of the K281 
amino acid due to a three-base-pair deletion 
(AAG codon) in exon 4 at positions 2615–2617. 
This polymorphism leads to reduced or non-
functional CYP2D6 enzyme activity25. It has a 
low prevalence in global populations, with a 
frequency ranging from 1% to 2%26.

• CYP2D6*10 (rs1065852): This allele arises 
from a cytosine (C) to thymine (T) substitution 
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at nucleotide 100, resulting in the replacement 
of proline with serine at codon 34. This 
polymorphism is prevalent among Asians and 
is associated with reduced CYP2D6 enzyme 
metabolism27. The *10 allele frequency is 43% 
in East Asians, 20% in Central and South Asians, 
and up to 7% in other populations26.

• CYP2D6*41 (rs28371725): This allele is 
caused by the substitution of guanine (G) with 
adenine (A) at position 2988 in intron 6, leading 
to aberrant mRNA splicing. The resulting enzyme 
has reduced metabolic function25. This single 
nucleotide variant (SNV) is the most abundant 
reduced function CYP2D6 allele in European 
populations, with a frequency of up to 7%26.

Given the impact of CYP2D6 enzyme 
activity on drug metabolism, evaluating allele 
frequencies in different populations is essential 
for understanding genetic variations across 
ethnic groups28. Previous studies have explored 
the frequency of various CYP2D6 polymorphisms, 
providing valuable insights into interethnic 
differences. However, the significance of these 
studies is somewhat limited due to small sample 
sizes5.

Additionally, comparative data on CYP2D6 
allele frequencies among different Iranian 
population groups remain limited11. Given the 
significant influence of CYP2D6 genotypes 
on catalytic protein activity and hepatic drug 
metabolism, determining allele frequencies 
across diverse populations is crucial for advancing 
genotype-guided drug response predictions6.

For individuals concerned about CYP2D6 
metabolism, genetic testing provides valuable 
information to guide drug dosage adjustments 3. 
 The aim of this study was to assess the allelic 
frequency of Cytochrome P450 2D6 (*4, *9, 
*10, *41) alleles in a healthy population from 
northwestern Iran.

Materials and Methods
Subject group and DNA extraction method
A group of fifty unrelated healthy individuals (aged 
18–60) from West Azerbaijan Province, Iran, was 
included in our study. Venous blood samples 
(3–4 mL) were obtained from each participant 

and collected into tubes containing 500 µL of 
0.5 mM EDTA (ethylenediaminetetraacetic acid). 
Genomic DNA was extracted using the salting-
out method29.

Primers sequences and genotyping method
Details on primers, PCR conditions, and methods 
used for allele investigation are provided in 
Table 130,31.

PCR reactions were performed in a 30 μL 
volume, consisting of 50 ng of DNA, 1× reaction 
buffer, 10 pmol of each primer, 200 μmol of each 
dNTP, 0.2 units of Taq DNA polymerase, and 1.5 
mmol MgCl₂. The amplified PCR products were 
digested using 0.5 μL of Thermo Scientific™ 
ER0551 MvaI (BstNI) restriction enzyme (10 
U/μL) at 37°C for 2 hours, specifically for the 
CYP2D6*4 allele.

Fragment analysis was conducted via 
electrophoresis on a 2% agarose gel stained with 
0.2 μL of CinnaGen DNA Safe Stain (CinnaGen 
Co., Tehran, Iran).

Statistical Analysis 
Allele and genotype frequencies were 
determined using the counting method and 
tested for Hardy-Weinberg equilibrium. All 
frequencies were expressed as percentages. 
A chi-square test was performed to compare 
frequency distributions between populations, 
with a p-value < 0.05 considered statistically 
significant

Results
Representative images of agarose gel 
electrophoresis for CYP2D64, CYP2D69, 
CYP2D610, and CYP2D641 alleles are shown in 
Figures 1-4. Genotype frequencies were counted 
and calculated based on the total number of 
samples.

Overall, among the study population, 
CYP2D69 had the lowest frequency (0%), while 
CYP2D610 was the most abundant allele (13%), 
followed by CYP2D64 (10%) and CYP2D641 (8%).

The most prevalent phenotype observed in 
this research was Intermediate Metabolizer (IM), 
with **12% of cases exhibiting the CYP2D64/10 
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Table1: Primers and PCRs conditions of tested alleles in this study 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Allele Primers PCR 
conditions Method Pattern of alleles after gel 

electrophoresis 

CCYYPP22DD66**44  f: 5′–tgccgccttcgccaaccact–3′ 
r: 5′–tcgccctgcagagactcctc–3′ 

94 °C/8 min 
62 °C/2 min 
30×72 °C/30 s 
94 °C/30 s 
62 °C/20 s 
72 °C/5 min 
22 °C/1 min 

 
PCR-RFLP 
Using BstNI 
37°C/2h 
 

 
Wild-type/Wild-type: 
201+108 bps 
Wild-type/Mutant-type: 
309+201+108 bps 
Mutant-type/Mutant-type: 
309 bp 

CCYYPP22DD66**99  

out f: 5ʹ-caggtgaacgcagagcacag-3ʹ 
out r: 5ʹ-ccggatgtaggatcatgagc-3ʹ 
wt f: 5ʹ-ttcctggcagagatggagaa-3ʹ 
*9 f: 5ʹ-ttcctggcagagatggaggt-3ʹ 

95°C/5 min 
95°C/30 s 
Wild-type: 
30×61°C/30 s 
Mutant-type: 
31×60°C/30 s 
72°C/1 min 
72°C/10 min 

 
ARMS-PCR 

 
Internal control: 549 bp 
Mutant-type: 341 bp 
Wild-type: 341 bp 

CCYYPP22DD66**1100  
  

out f: 5ʹ-ggggcaagaacctctggagc-3ʹ 
out r: 5ʹ-ctggtccagcctgtggtttc-3ʹ 
wt r: 5ʹ-agtggcagggggcctggagg-3ʹ 
*10 f: 5ʹ-acgctgggctgcacgcttct-3ʹ 

95°C/5 min 
95°C/30 s 
Wild-type: 
32×67°C/30 s 
Mutant-type: 
29×60°C/30 s 
72°C/1 min 
72°C/10 min 

 
ARMS-PCR 

 
Internal control: 505 bp 
Mutant-type:192 bp 
Wild-type: 351 bp 

CCYYPP22DD66**4411  

out f: 5ʹ-ccgttctgtcccgagtatgc-3ʹ 
out r: 5ʹ-cggccctgacactccttctt-3ʹ 
wt f: 5ʹ-agtgcaggggccgagggtgg-3ʹ 
*41 f: 5ʹ-agtgcaggggccgagggcga-3ʹ 

95°C/5 min 
95°C/30 s 
Both wild/ 
mutant type: 
32×65.5°C/30 
s 
72°C/1 min 
72°C/10 min 
 

 
ARMS-PCR 

 
Internal control: 339 bp 
Mutant-type: 142 bp 
Wild-type: 142 bp 

Table 1. Primers and PCRs conditions of tested alleles in this study

 
Figure 1. CYP2D6*4 allele in our samples. 

M: 100 bp DNA ladder. w/m: heterozygous sample for mutant allele of CYP2D6*4 (201bp+108 bp+309 bp); w/w: homozygous 
sample for normal allele of CYP2D6*4 (201bp+108 bp) 

 
 

 

 

  

Figure 1. CYP2D6*4 allele in our samples
M: 100 bp DNA ladder. w/m: heterozygous sample for mutant allele of CYP2D6*4 (201bp+108 bp+309 bp); w/w: homozygous 

sample for normal allele of CYP2D6*4 (201bp+108 bp)
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genotype. Additionally, **2% of cases carried 
the CYP2D64/41 genotype, and **homozygous 
CYP2D610/10 and CYP2D641/41 genotypes 

were identified in 2% of tested samples.
No homozygous sample for the mutant allele 

CYP2D6*4 was detected in this study.

 

 

 
Figure 2. CYP2D6*9 allele in our samples. 

M: 100 bp DNA ladder. Homozygous samples for normal allele of CYP2D6*9 (341bp+549 bp) (left); 
Mutant allele of CYP2D6*9 was not found in this study (549 bp: internal control without 341 bp) (right) 

 

 

 

 

 

 

  

 

 

 

 
Figure 3. Mutant CYP2D6*10 allele in this study. M: 100 bp DNA ladders. 

Lane 1: A sample with mutant CYP2D6*10 allele; Lane 2: A sample without mutant CYP2D6*10 allele; 
Internal control: 505 bp and mutant allele: 192 bp 

 
 

 

  

 

 

 

 

 
Figure 4. CYP2D6*41 allele in our samples. 

M: 100 bp DNA ladder. Lane 1: a samples with normal allele of CYP2D6*41 (142bp+339 bp) (left); 
Lane 2: a sample without mutant allele of CYP2D6*41; Lane 3: a sample with mutant allele of CYP2D6*41(right) 

Normal/mutant allele: 142 bp and internal control: 339 bp 

 

1              2                       L                    3         4 

Figure 2. CYP2D6*9 allele in our samples
M: 100 bp DNA ladder. Homozygous samples for normal allele of CYP2D6*9 (341bp+549 bp) (left);

Mutant allele of CYP2D6*9 was not found in this study (549 bp: internal control without 341 bp) (right)

Figure 3. Mutant CYP2D6*10 allele in this study. M: 100 bp DNA ladders
Lane 1: A sample with mutant CYP2D6*10 allele; Lane 2: A sample without mutant CYP2D6*10 allele;

Internal control: 505 bp and mutant allele: 192 bp

Figure 4. CYP2D6*41 allele in our samples
M: 100 bp DNA ladder. Lane 1: a samples with normal allele of CYP2D6*41 (142bp+339 bp) (left);

Lane 2: a sample without mutant allele of CYP2D6*41; Lane 3: a sample with mutant allele of CYP2D6*41(right)
Normal/mutant allele: 142 bp and internal control: 339 bp
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Discussion
In this study, we examined the CYP2D6*4, 9, 
10, and 41 alleles in a healthy population from 
northwest Iran. Our findings indicated that the 
allelic frequency of **CYP2D69 (rs5030656) was 
zero. Additionally, the frequencies of CYP2D64 
(rs3892097), CYP2D610 (rs1065852), and 
CYP2D6*41 (rs28371725) were 10%, 13%, and 
8%, respectively.

Our results suggest that non-functional and 
reduced-function alleles are more prevalent in this 
population. To contextualize these findings, we 
compared the allele frequencies of **CYP2D6*4, 
*9, 10, and 41 from this study with those 
reported in other populations (Tables 2 and 3). 
 The results indicate that allele frequencies in 
our study differ from those observed in several 
Asian populations.

Among the most frequently detected alleles in 
this study were **CYP2D64 and 10. The frequency 
of the CYP2D6*41 reduced-function allele was 
similar among Caucasians19, the United States32, 
and this study, while it varied in African5 and 
European5 populations. Conversely, CYP2D6*41 

was found to be more frequent in Turkey18.
The CYP2D6*4 allele exhibits a distinct 

distribution pattern between Iranian and 
Caucasian populations; however, it remains one 
of the most prevalent alleles among Caucasians. 
The distribution of CYP2D6*4 was similar among 
Iranian, African, and Turkish populations.

The Chinese population13 exhibits the 
lowest frequency of CYP2D6*4, in contrast to 
other global populations. The frequencies of 
CYP2D6*4 among European and United States 
populations are relatively similar. The frequency 
of CYP2D6*10 in our study closely resembles 
that found in South Indian populations30. 
Notably, CYP2D6*10 was absent in European 
populations 13, but is one of the most prevalent 
alleles in Chinese populations. Among United 
States populations, CYP2D6*10, a reduced-
function allele, has a low frequency of under 2%.

The CYP2D6*9 allele was absent (0%) in the 
Iranian population, similar to findings in African5 

and Chinese13 populations. Generally, CYP2D6*9 
is a relatively rare allele across populations.

Table 3 presents the allele frequencies 

 
 
 
 
 
 
 

Table2. Comparison of CCYYPP22DD66 allelic frequency among Iranian and some other major populations. 
 

AAlllleellee  Turkey 
(%)18 

Cauca
sians 
(%)19 

South 
Indians 
(%)30 

Africans 
(%)5 

Europeans 
(%)5 

Chinese 
(%)13 

US(%)3

2 

West 
Azerbaijan of 
Iran (%) 

**44  9.85 20.7 7.3 11.9 15.5 <1 16.1 10.0 

**99  ND 2.0 ND 0.4 1.6 <1 2.4 0.0 

**1100  ND 8.0 10.2 3.2 0.2 60 1.7 13.0 

**4411  15.15 8.0 ND 3.0 3.0 ND 8.2 8.0 

ND: Not Determined

 
 
 
 
 
 
 
 
Table3. Comparison of  CCYYPP22DD66 allelic frequency between our results and the other Iranian groups. 

 

AAlllleellee  Neyshaburinezhad et al4 Kouhi et al33 Bagheri et al27  Our study 

CCYYPP22DD66**44  11.2% 12.5% 0% 10.0% 

CCYYPP22DD66**99  ND ND ND 0% 

CCYYPP22DD66**1100  15.10% 9.0% 31.9% 13.0% 

CCYYPP22DD66**4411  14% ND ND 8.0% 
  ND: Not Determined 
 
 
 
 

Table 2. Comparison of CYP2D6 allelic frequency among Iranian and some other major populations

Table 3. Comparison of CYP2D6 allelic frequency between our results and the other Iranian groups
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of CYP2D6 among different Iranian ethnic 
groups. Notably, CYP2D6*4 was not detected in 
populations such as Fars, Lure, Kurd, and Mazani, 
which contrasts with our findings27. However, 
the frequency of CYP2D6*10 in this study aligns 
with previous studies, with rates reaching up 
to 32%. In contrast, the study by Kouhi et al. 33. 
reported a CYP2D6*10 frequency lower than 
10%, contradicting other studies.

Our results are consistent with findings from 
Neyshaburinezhad et al.4, where CYP2D6*10 
was one of the most frequent alleles. The high 
prevalence of homozygous T/T CYP2D6*10 in 
Iranian groups suggests a predisposition to 
adverse or poor drug responses, potentially 
increasing the risk of mortality.

CYP2D6 is a clinically significant pharmacogene 
involved in the metabolism of approximately 25% 
of commonly prescribed drugs across various 
medical disciplines. It is highly polymorphic, with 
numerous genetic variants that exhibit population-
specific distributions and significantly influence its 
drug-metabolizing enzymatic activity.

Research indicates that CYP2D6 and its 
polymorphisms play a vital role in personalized 
dosing strategies for CYP2D6 drug substrates, 
particularly in opioid therapy, psychiatry, 
oncology, and cardiology34. Consequently, 
identifying individuals with altered 
pharmacokinetics for CYP2D6 substrates is 
essential to prevent adverse drug reactions.

Evaluating CYP2D6 polymorphisms in 
different ethnic populations provides valuable 
insights into personalized medicine and 
facilitates comparisons of pharmacogenetic 
variations across ethnic groups. Genetic testing 
to detect CYP2D6 alleles is a fundamental step 
in minimizing drug-related adverse effects.

This investigation serves as a pilot study and 
represents the findings of a master’s thesis.At 
future, it is necessary to pay attention to more 
details including number of samples and the 
other CYP2D6 alleles.

Conclusion
Our findings demonstrated that the CYP2D6*9 
allele had the lowest frequency. The most 

abundant alleles were CYP2D6*10, followed 
by CYP2D6*4 and CYP2D6*41, respectively. 
The most prevalent phenotype observed in our 
study was Intermediate Metabolizer (IM).
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