Document Type : Original Article

Authors

1 Department of Rehabilitation, Brain and Cognition Clinic, Institute for Cognitive Science Studies (ICSS), Tehran, Iran

2 Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran

3 Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran

4 Institute for Cognitive Science Studies (ICSS), Tehran, Iran

Abstract

BACKGROUND: Cerebral ischemia or stroke is the second leading cause of death in the world, and most surviving patients suffer from long-term physical and cognitive disabilities, which create many social and economic problems for them and society. Visual attention impairment is a common cognitive complication among patients with cerebral ischemia, especially in the Middle Cerebral Artery (MCA). One way to improve attention in these patients is cognitive rehabilitation. RehaCom software is one of the computer-based tools to rehabilitate visual attention in these patients. The purpose of this study was to evaluate RehaCom cognitive rehabilitation on different aspects of visual attention in patients with middle cerebral artery ischemia.
METHODS: In this single-blind randomized clinical trial, 30 patients with cerebral ischemia in MCA territories were selected and randomly divided into control (n=15) and intervention (n=15) groups. Visual attention of both groups was assessed before the treatments using the Integrated Visual-Auditory test (IVA). Then the intervention group was rehabilitated for 8 sessions of 45 minutes each with RehaCom cognitive software, according to our selected modules, while the control group was only under intervention by non-targeted computer games. After applying the treatments, visual attention in the two groups was assessed using the IVA test.
RESULTS: There were no significant differences in visual focus attention between the intervention and control groups before the intervention (29.20±30.06 and 49.53±29.69, P value >0.05). In addition, there were no significant differences in visual selective attention in both groups before the study (23.07±24.73, 39.27±27.08, P value >0.05). However, significant differences were found in visual sustained attention, visual alternating attention, and visual divided attention at baseline (P value <0.05). After the intervention, visual focus attention in the intervention group was significantly higher than in the control group (84.67±26.51, 57.20±31.44, P value <0.05). RehaCom cognitive software intervention increased visual divided attention in the intervention group (88.40±14.85 versus 72.70±25.73, P value <0.05).
CONCLUSION: These results demonstrate that using RehaCom cognitive software can improve focus attention and visual attention in the intervention group. Cognitive rehabilitation with RehaCom was able to improve visual attention deficits in patients with middle cerebral artery ischemia.

Keywords

1. GBD 2016 Lifetime Risk of Stroke Collaborators; Feigin VL, Nguyen G, Cercy K, Johnson CO, Alam T, et al. Global, Regional, and Country-Specific Lifetime Risks of Stroke, 1990 and 2016. N Engl J Med. 2018 Dec 20;379(25):2429-37. https://doi.org/10.1056/nejmoa1804492
2. GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019 May;18(5):459-80. https://doi.org/10.1016/s1474-4422(18)30499-x
3. Petersen A, Vangkilde S, Fabricius C, Iversen HK, Delfi TS, Starrfelt R. Visual attention in posterior stroke and relations to alexia. Neuropsychologia. 2016 Nov;92:79-89. https://doi.org/10.1016/j.neuropsychologia.2016.02.029
4. Young PA, Young PH, Tolbert DL. Basic Clinical Neuroscience. 3rd ed. Philadelphia: Wolters Kluwer; 2015.
5. Everts R, Pavlovic J, Kaufmann F, Uhlenberg B, Seidel U, Nedeltchev K, et al. Cognitive functioning, behavior, and quality of life after stroke in childhood. Child Neuropsychol. 2008 Jul;14(4):323-38. https://doi.org/10.1080/09297040701792383
6. Hajek CA, Yeates KO, Anderson V, Mackay M, Greenham M, Gomes A, et al. Cognitive outcomes following arterial ischemic stroke in infants and children. J Child Neurol. 2014 Jul;29(7):887-94. https://doi.org/10.1177/0883073813491828
7. Hurford R, Charidimou A, Fox Z, Cipolotti L, Werring DJ. Domain-specific trends in cognitive impairment after acute ischaemic stroke. J Neurol. 2013 Jan;260(1):237-41. https://doi.org/10.1007/s00415-012-6625-0
8. Spreng RN, Sepulcre J, Turner GR, Stevens WD, Schacter DL. Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J Cogn Neurosci. 2013 Jan;25(1):74-86. https://doi.org/10.1162/jocn_a_00281
9. Johnson A, Proctor RW. Attention: Theory and Practice. Thousand Oaks, CA: SAGE Publications; 2004.
10. Jones TA. Motor compensation and its effects on neural reorganization after stroke. Nat Rev Neurosci. 2017 May;18(5):267-80. https://doi.org/10.1038/nrn.2017.26
11. Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn Sci. 2014 Apr;18(4):177-85. https://doi.org/10.1016/j.tics.2013.12.003
12. Mak M, Samochowiec J, Tybura P, Bieńkowski P, Karakiewicz B, Zaremba Pechmann L, et al. The efficacy of cognitive rehabilitation with RehaCom programme in schizophrenia patients. The role of selected genetic polymorphisms in successful cognitive rehabilitation. Ann Agric Environ Med. 2013;20(1):77-81.
13. Galeoto G, Iori F, De Santis R, Santilli V, Mollica R, Marquez MA, et al. The outcome measures for loss of functionality in the activities of daily living of adults after stroke: a systematic review. Top Stroke Rehabil. 2019 Apr;26(3):236-45. https://doi.org/10.1080/10749357.2019.1574060
14. Unibaso-Markaida I, Iraurgi I, Ortiz-Marqués N, Amayra I, Martínez-Rodríguez S. Effect of the Wii Sports Resort on the improvement in attention, processing speed and working memory in moderate stroke. J Neuroeng Rehabil. 2019 Feb 28;16(1):32. https://doi.org/10.1186/s12984-019-0500-5
15. Jacova C, Pearce LA, Costello R, McClure LA, Holliday SL, Hart RG, et al. Cognitive impairment in lacunar strokes: the SPS3 trial. Ann Neurol. 2012 Sep;72(3):351-62. https://doi.org/10.1002/ana.23733
16. Bugarski Ignjatovic V, Semnic M, Gebauer Bukurov K, Kozic D. Cognitive impairment and functional ability in the acute phase of ischemic stroke. Eur Rev Med Pharmacol Sci. 2015 Sep;19(17):3251-6.
17. Shucard JL, McCabe DC, Szymanski H. An event-related potential study of attention deficits in posttraumatic stress disorder during auditory and visual Go/NoGo continuous performance tasks. Biol Psychol. 2008 Oct;79(2):223-33. https://doi.org/10.1016/j.biopsycho.2008.05.005
18. Cumming TB, Marshall RS, Lazar RM. Stroke, cognitive deficits, and rehabilitation: still an incomplete picture. Int J Stroke. 2013 Jan;8(1):38-45. https://doi.org/10.1111/j.1747-4949.2012.00972.x
19. Schmidtke K, Manner H, Kaufmann R, Schmolck H. Cognitive procedural learning in patients with fronto-striatal lesions. Learn Mem. 2002 Nov-Dec;9(6):419-29. https://doi.org/10.1101%2Flm.47202
20. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002 Mar;3(3):201-15. https://doi.org/10.1038/nrn755
21. Veldsman M, Churilov L, Werden E, Li Q, Cumming T, Brodtmann A. Physical Activity After Stroke Is Associated With Increased Interhemispheric Connectivity of the Dorsal Attention Network. Neurorehabil Neural Repair. 2017 Feb;31(2):157-67. https://doi.org/10.1177/1545968316666958
22. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):10046-51. https://doi.org/10.1073/pnas.0604187103E. Epub 2006 Jun 20. Erratum in: Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13560.
23. Moore KL, Dalley AF, Agur AMR. Clinically Oriented Anatomy. 7th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2014.
24. Liu J, Wang C, Diao Q, Qin W, Cheng J, Yu C. Connection Disruption Underlying Attention Deficit in Subcortical Stroke. Radiology. 2018 Jul;288(1):186-94. https://doi.org/10.1148/radiol.2018171730
25. Boukrina O, Barrett AM. Disruption of the ascending arousal system and cortical attention networks in post-stroke delirium and spatial neglect. Neurosci Biobehav Rev. 2017 Dec;83:1-10. https://doi.org/10.1016/j.neubiorev.2017.09.024
26. Mariano MA, Tang K, Kurtz M, Kates WR. Examining the durability of a hybrid, remote and computer-based cognitive remediation intervention for adolescents with 22q11.2 deletion syndrome. Early Interv Psychiatry. 2018 Aug;12(4):686-93. https://doi.org/10.1111/eip.12367
27. Barker-Collo SL, Feigin VL, Lawes CM, Parag V, Senior H, Rodgers A. Reducing attention deficits after stroke using attention process training: a randomized controlled trial. Stroke. 2009 Oct;40(10):3293-8. https://doi.org/10.1161/strokeaha.109.558239
28. Tacchino A, Veldkamp R, Coninx K, Brulmans J, Palmaers S, Hämäläinen P, et al. Design, Development, and Testing of an App for Dual-Task Assessment and Training Regarding Cognitive-Motor Interference (CMI-APP) in People With Multiple Sclerosis: Multicenter Pilot Study. JMIR Mhealth Uhealth. 2020 Apr 16;8(4):e15344. https://doi.org/10.2196/15344
29. De Luca R, Calabrò RS, Gervasi G, De Salvo S, Bonanno L, Corallo F, et al. Is computer-assisted training effective in improving rehabilitative outcomes after brain injury? A case-control hospital-based study. Disabil Health J. 2014 Jul;7(3):356-60. https://doi.org/10.1016/j.dhjo.2014.04.003
30. Jiang C, Yang S, Tao J, Huang J, Li Y, Ye H, et al. Clinical Efficacy of Acupuncture Treatment in Combination With RehaCom Cognitive Training for Improving Cognitive Function in Stroke: A 2 × 2 Factorial Design Randomized Controlled Trial. J Am Med Dir Assoc. 2016 Dec 1;17(12):1114-22. https://doi.org/10.1016/j.jamda.2016.07.021
31. De Luca R, Maggio MG, Maresca G, Latella D, Cannavò A, Sciarrone F, et al. Improving Cognitive Function after Traumatic Brain Injury: A Clinical Trial on the Potential Use of the Semi-Immersive Virtual Reality. Behav Neurol. 2019 Jul 30;2019:9268179. https://doi.org/10.1155/2019/9268179
32. Li K, Robertson J, Ramos J, Gella S. Computer-based cognitive retraining for adults with chronic acquired brain injury: a pilot study. Occup Ther Health Care. 2013 Oct;27(4):333-44. https://doi.org/10.3109/07380577.2013.844877
33. Filippi M, Riccitelli G, Mattioli F, Capra R, Stampatori C, Pagani E, et al. Multiple sclerosis: effects of cognitive rehabilitation on structural and functional MR imaging measures--an explorative study. Radiology. 2012 Mar;262(3):932-40. https://doi.org/10.1148/radiol.11111299
34. Bonavita S, Sacco R, Della Corte M, Esposito S, Sparaco M, d’Ambrosio A, et al. Computer-aided cognitive rehabilitation improves cognitive performances and induces brain functional connectivity changes in relapsing remitting multiple sclerosis patients: an exploratory study. J Neurol. 2015 Jan;262(1):91-100. https://doi.org/10.1007/s00415-014-7528-z
35. De Giglio L, Upadhyay N, De Luca F, Prosperini L, Tona F, Petsas N, et al. Corpus callosum microstructural changes associated with Kawashima Nintendo Brain Training in patients with multiple sclerosis. J Neurol Sci. 2016 Nov 15;370:211-13. https://doi.org/10.1016/j.jns.2016.09.041
36. Chiaravalloti ND, Genova HM, DeLuca J. Cognitive rehabilitation in multiple sclerosis: the role of plasticity. Front Neurol. 2015 Apr 2;6:67. https://doi.org/10.3389/fneur.2015.00067