Document Type : Review Article

Authors

1 Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2 Deputy ministry of Education, Ministry of Health and Medical Education, Tehran, Iran

3 Department of Cardiology, Taleghani General Hospital. School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

4 Hematopoietic stem cell Research Centre- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

10.48305/arya.2024.41664.2898

Abstract

BACKGROUND: Cardiovascular disease (CVD) is a global health challenge. Various studies have shown that genetic and environmental factors play roles in the development and progression of CVD. Small non-coding RNAs, namely microRNAs (miRs), regulate gene expression and have key roles in essential cellular processes such as apoptosis, cell cycle, differentiation, and proliferation. Currently, clinical studies highlight the critical role of platelets and miRs in coronary thrombosis, atherosclerosis, and CVD.
METHODS: Using search engines such as PubMed and Scopus, articles studying platelet miRs and their effects on atherosclerosis and cardiovascular disease were reviewed.
RESULTS: This article presents a comprehensive analysis of the association of platelet-related miRs as prognostic, diagnostic, and therapeutic biomarkers with the pathogenesis of atherosclerosis and cardiovascular disease.
CONCLUSION: Taken together, data show that platelet-related miRs not only play important roles in the initial development of atherosclerosis and cardiovascular disease (CVD), but they are also considered prognostic and diagnostic biomarkers in CVD.

Keywords

  1. Wendelboe AM, Raskob GE. Global Burden of Thrombosis: Epidemiologic Circ Res. 2016 Apr 29;118(9):1340-7. https://doi.org/10.1161/ circresaha.115.306841
  2. Bhatnagar   Environmental  Determinants of Cardiovascular Disease. Circ Res. 2017 Jul 7;121(2):162-80.                 https://doi.org/10.1161/ circresaha.117.306458
  3. Khodadi E. Platelet Function in Cardiovascular Disease: Activation of Molecules and Activation by Molecules. Cardiovasc 2020 Feb;20(1):1-10. https://doi.org/10.1007/s12012-019-09555-4
  4. Huang HY, Lin YC, Li J, Huang KY, Shrestha S, Hong HC, et miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res. 2020 Jan 8;48(D1):D148-D54. https://doi.org/10.1093/nar/ gkz896
  5. Quévillon Huberdeau M, Simard MJ. A guide to microRNA-mediated gene silencing. FEBS J. 2019 Feb;286(4):642-52. https://doi.org/10.1111/ 14666
  6. Turchinovich A, Weiz L, Langheinz A, Burwinkel
  7. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011 Sep 1;39(16):7223-
  8. https://doi.org/10.1093/nar/gkr254
  9. Wicik Z, Czajka P, Eyileten C, Fitas A, Wolska M, Jakubik D, et The role of miRNAs in regulation of platelet activity and related diseases - a bioinformatic analysis. Platelets. 2022 Oct 3;33(7):1052-64. https:// doi.org/10.1080/09537104.2022.2042233
  10. Yeung J, Li W, Holinstat M. Platelet Signaling and Disease: Targeted Therapy for Thrombosis and Other Related Diseases. Pharmacol Rev. 2018 Jul;70(3):526-
  11. https://doi.org/10.1124/pr.117.014530
  12. Duttaroy AK. Role of Gut Microbiota and Their Metabolites on Atherosclerosis, Hypertension and Human Blood Platelet Function: A Review. Nutrients. 2021 Jan 3;13(1):144. https://doi. org/10.3390%2Fnu13010144
  13. Smith DF, Galkina E, Ley K, Huo Y. GRO family chemokines are specialized for monocyte arrest from flow. Am J Physiol Heart Circ Physiol. 2005 Nov;289(5):H1976-H84. https://doi.org/10.1152/ 00153.2005
  14. Abi-Younes S, Sauty A, Mach F, Sukhova GK, Libby P, Luster The stromal cell-derived factor-1 chemokine is a potent platelet agonist highly expressed in atherosclerotic plaques. Circ Res. 2000 Feb 4;86(2):131-8. https://doi.org/10.1161/01. res.86.2.131
  1. Mehrpouri M, Bashash D, Mohammadi MH, Gheydari ME, Satlsar ES, Hamidpour M. Co- culture of Platelets with Monocytes Induced M2 Macrophage Polarization and Formation of Foam Cells: Shedding Light on the Crucial Role of Platelets in Monocyte Turk J Haematol. 2019 May 3;36(2):97-105. https://doi.org/10.4274%2Ftjh. galenos.2019.2018.0449
  2. von Hundelshausen P, Weber KS, Huo Y, Proudfoot AE, Nelson PJ, Ley K, et al. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation. 2001 Apr 3;103(13):1772-7. https://doi.org/10.1161/01. 103.13.1772
  3. Duhamel TA, Xu YJ, Arneja AS, Dhalla NS. Targeting platelets for prevention and treatment of cardiovascular disease. Expert Opin Ther 2007 Dec;11(12):1523-33. https://doi. org/10.1517/14728222.11.12.1523
  4. Malik A, Bromage DI, He Z, Candilio L, Hamarneh A, Taferner S, et Exogenous SDF- 1α Protects Human Myocardium from Hypoxia- Reoxygenation Injury via CXCR4. Cardiovasc Drugs Ther. 2015 Dec;29(6):589-92. https://doi. org/10.1007%2Fs10557-015-6622-5
  5. Ziff OJ, Bromage DI, Yellon DM, Davidson Therapeutic  strategies  utilizing  SDF- 1α in ischaemic cardiomyopathy. Cardiovasc Res. 2018 Mar 1;114(3):358-67. https://doi. org/10.1093%2Fcvr%2Fcvx203
  6. Penna C, Bassino E, Alloatti G. Platelet activating factor: the good and the bad in the ischemic/ reperfused heart. Exp Biol Med (Maywood). 2011 Apr 1;236(4):390-401. https://doi.org/10.1258/ 2011.010316
  7. Herrington W, Lacey B, Sherliker P, Armitage J, Lewington Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circ Res. 2016 Feb 19;118(4):535-46. https://doi.org/10.1161/ circresaha.115.307611
  8. Bäck M, Yurdagul A Jr, Tabas I, Öörni K, Kovanen Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol. 2019 Jul;16(7):389-406. https://doi. org/10.1038/s41569-019-0169-2
  9. Pordzik J, Pisarz K, De Rosa S, Jones AD, Eyileten C, Indolfi C, et The Potential Role of Platelet-Related microRNAs in the Development of Cardiovascular

 

Events in High-Risk Populations, Including Diabetic Patients: A Review. Front Endocrinol (Lausanne). 2018 Mar 20;9:74. https://doi.org/10.3389/ fendo.2018.00074

  1. Marketou M, Kontaraki J, Papadakis J, Kochiadakis G, Vrentzos G, Maragkoudakis S, et al. Platelet microRNAs in hypertensive patients with and without cardiovascular disease. J Hum Hypertens. 2019 Feb;33(2):149-56. https://doi.org/10.1038/ s41371-018-0123-5
  2. Elgheznawy A, Fleming I. Platelet-Enriched MicroRNAs and Cardiovascular Homeostasis. Antioxid Redox Signal. 2018 Sep 20;29(9):902-21. https://doi.org/10.1089/ars.2017.7289
  3. Shi L, Kojonazarov B, Elgheznawy A, Popp R, Dahal BK, Böhm M, et al. miR-223-IGF-IR signalling in hypoxia- and load-induced right-ventricular failure: a novel therapeutic approach. Cardiovasc Res. 2016 Aug 1;111(3):184-93. https://doi.org/10.1093/cvr/ cvw065
  4. Bao H, Chen YX, Huang K, Zhuang F, Bao M, Han Y, et al. Platelet-derived microparticles promote endothelial cell proliferation in hypertension via miR- 142-3p. FASEB 2018 Jul;32(7):3912-23. https://

doi.org/10.1096/fj.201701073r

  1. Alexandru N, Constantin A, Nemecz M, Comariţa IK, Vîlcu A, Procopciuc A, et al. Hypertension Associated With Hyperlipidemia Induced Different MicroRNA Expression Profiles in Plasma, Platelets, and Platelet-Derived Microvesicles; Effects of Endothelial Progenitor Cell Front Med (Lausanne). 2019 Dec 3;6:280. https://doi. org/10.3389/fmed.2019.00280
  2. Cengiz M, Yavuzer S, Kılıçkıran Avcı B, Yürüyen M, Yavuzer H, Dikici SA, et al. Circulating miR-21 and eNOS in subclinical atherosclerosis in patients with hypertension. Clin Exp 2015;37(8):643-9. https://doi.org/10.3109/10641963.2015.1036064
  3. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, et Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010 Sep 3;107(5):677-84. https://doi.org/10.1161/ circresaha.109.215566
  4. Gensini GF, Corradi F. L’ipertensione in funzione dell’età [Hypertension as a function of age]. Ital Heart J. 2000 Jun;1 Suppl 2:23-31.
  5. GBD 2015 Obesity Collaborators; Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, et Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med. 2017 Jul 6;377(1):13-27. https://doi.org/10.1056/ nejmoa1614362
  6. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014 Aug 30;384(9945):766-81. https://doi.org/10.1016/s0140-6736(14)60460-8. Epub 2014 May 29. Erratumin: Lancet. 2014 Aug 30;384(9945):746.
  1. Lovren F, Teoh H, Verma S. Obesity and atherosclerosis: mechanistic insights. Can J Cardiol. 2015 Feb;31(2):177-83. https://doi.org/10.1016/j. 2014.11.031
  2. Ji C, Guo X. The clinical potential of circulating microRNAs in obesity. Nat Rev Endocrinol. 2019 Dec;15(12):731-43. https://doi.org/10.1038/ s41574-019-0260-0
  3. Nosalski R, Guzik TJ. Perivascular adipose tissue inflammation in vascular disease. Br J Pharmacol. 2017 Oct;174(20):3496-513. https://doi. org/10.1111/bph.13705
  4. Villacorta L, Chang L. The role of perivascular adipose tissue in vasoconstriction, arterial stiffness, and aneurysm. Horm Mol Biol Clin Investig. 2015 Feb;21(2):137-47. https://doi. org/10.1515%2Fhmbci-2014-0048
  5. O’Shea D, Hogan Dysregulation of Natural Killer Cells in Obesity. Cancers (Basel). 2019 Apr 23;11(4):573. https://doi. org/10.3390%2Fcancers11040573
  6. Lee BC, Kim MS, Pae M, Yamamoto Y, Eberlé D, Shimada T, et al. Adipose Natural Killer Cells Regulate Adipose Tissue Macrophages to Promote Insulin Resistance in Cell Metab. 2016 Apr 12;23(4):685-98. https://doi.org/10.1016/j. cmet.2016.03.002
  7. Hsu LA, Chou HH, Teng MS, Wu S, Ko YL. Circulating chemerin levels are determined through circulating platelet counts in nondiabetic Taiwanese people: A bidirectional Mendelian randomization study. Atherosclerosis. 2021 Mar;320:61-9. https:// org/10.1016/j.atherosclerosis.2021.01.014
  8. Xiong W, Luo Y, Wu L, Liu F, Liu H, Li J, et al. Chemerin Stimulates Vascular Smooth Muscle Cell Proliferation and Carotid Neointimal Hyperplasia by Activating Mitogen-Activated Protein Kinase Signaling. PLoS One. 2016 Oct 28;11(10):e0165305. https://doi.org/10.1371/journal.pone.0165305
  9. Eyileten C, Wicik Z, Keshwani D, Aziz F, Aberer F, Pferschy PN, et al. Alteration of circulating platelet-related and diabetes-related microRNAs in individuals with type 2 diabetes mellitus: a stepwise hypoglycaemic clamp study. Cardiovasc Diabetol. 2022 May 20;21(1):79. https://doi.org/10.1186/ s12933-022-01517-5
  10. Chabior A, Pordzik J, Mirowska-Guzel D, Postuła
  11. The role of acetylsalicylic acid and circulating microRNAs in primary prevention of cardiovascular events in patients with Diabetes Mellitus Type 2 - A Review. Ann Agric Environ Med. 2019 Dec 19;26(4):512-22. https://doi.org/10.26444/ aaem/100391
  12. Landry P, Plante I, Ouellet DL, Perron MP, Rousseau G, Provost P. Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol. 2009 Sep;16(9):961-6. https://doi.org/10.1038/ 1651
  13. Kilic ID, Dodurga Y, Uludag B, Alihanoglu YI, Yildiz BS, Enli Y, et al. MicroRNA -143 and -223 in Gene. 2015 Apr 15;560(2):140-2. https:// doi.org/10.1016/j.gene.2015.01.048
  14. Ling HY, Wen GB, Feng SD, Tuo QH, Ou HS, Yao CH, et al. MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling. Clin Exp Pharmacol Physiol. 2011 Apr;38(4):239-46. https://doi.org/10.1111/j.1440-1681.2011.05493.x
  15. Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM, et Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011 Oct 19;478(7369):404-7. https://doi.org/10.1038/ nature10486
  16. Price NL, Rotllan N, Canfrán-Duque A, Zhang X, Pati P, Arias N, et Genetic Dissection of the Impact of miR-33a and miR-33b during the Progression of Atherosclerosis. Cell Rep. 2017 Oct 31;21(5):1317-
  17. https://doi.org/10.1016/j.celrep.2017.10.023
  18. Sandesara PB, Virani SS, Fazio S, Shapiro The Forgotten Lipids: Triglycerides, Remnant Cholesterol, and Atherosclerotic Cardiovascular Disease Risk. Endocr Rev. 2019 Apr 1;40(2):537-57. https://doi.org/10.1210/er.2018-00184
  19. Chatterjee M, Rath D, Schlotterbeck J, Rheinlaender J, Walker-Allgaier B, Alnaggar N, et Regulation of oxidized platelet lipidome: implications for coronary artery disease. Eur Heart J. 2017 Jul 1;38(25):1993- 2005. https://doi.org/10.1093/eurheartj/ehx146
  20. Akkerman From low-density lipoprotein to platelet activation. Int J Biochem Cell Biol. 2008;40(11):2374-8. https://doi.org/10.1016/j. biocel.2008.04.002
  21. Salomon RG. Structural identification and cardiovascular activities of oxidized phospholipids. Circ Res. 2012 Sep 14;111(7):930-46. https://doi. org/10.1161%2FCIRCRESAHA.112.275388
  22. Podrez EA, Byzova TV, Febbraio M, Salomon RG, Ma Y, Valiyaveettil M, et Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat Med. 2007 Sep;13(9):1086-95. https://doi.org/10.1038/nm1626
  1. Mehrpouri M, Bashash D, Gheydari ME, Mohammadi MH, Baghestani AR, Hamidpour M. Association Between Increased Expression Levels of SDF-1 and CXCR4 on the Platelets of Patients With Coronary Artery Disease and Low LVEF. Iran Heart J. 2022; 23(1):42-53.
  2. Llorente-Cortés V, Royo T, Otero-Viñas M, Berrozpe M, Badimon L. Sterol regulatory element binding proteins downregulate LDL receptor-related protein (LRP1) expression and LRP1-mediated aggregated LDL uptake by human Cardiovasc Res. 2007 Jun 1;74(3):526-36. https://doi.org/10.1016/j. cardiores.2007.02.020
  3. Barati F, Bashash D, Mohamadi MH, Mehrpori M, Hamidpour M. The effect of ox-LDL and platelets on macrophages, M2 macrophage polarization, and foam cell ARYA Atheroscler. 2023 Jan;19(1):25-33. https://doi.org/10.48305/ arya.2022.11777.2422
  4. Hamidpour M, Bashash D, Nehzati P, Abbasalizadeh M, Nikoogoftar M, Hamidpour R. The expression of hSR-B1 on platelets of patients with coronary artery disease (CAD). Clin Hemorheol Microcirc. 2019;71(1):9- https://doi.org/10.3233/ch-170311
  1. Choukroun EM, Labrousse LM, Madonna FP, Deville C. Mobile thrombus of the thoracic aorta: diagnosis and treatment in 9 cases. Ann Vasc Surg. 2002 Nov;16(6):714-22. https://doi.org/10.1007/ s10016-001-0314-2
  2. Camino-López S, Llorente-Cortés V, Sendra J, Badimon L. Tissue factor induction by aggregated LDL depends on LDL receptor-related protein expression (LRP1) and Rho A translocation in human vascular smooth muscle Cardiovasc Res. 2007 Jan 1;73(1):208-16. https://doi.org/10.1016/j. cardiores.2006.10.017
  3. Li X, Yang M, Wang H, Jia Y, Yan P, Boden G, et al. Overexpression of JAZF1 protected ApoE- deficient mice from atherosclerosis by inhibiting hepatic cholesterol synthesis via CREB-dependent mechanisms. Int J 2014 Nov 15;177(1):100-https://doi.org/10.1016/j.ijcard.2014.09.007
  4. Liao ZZ, Wang YD, Qi XY, Xiao XH. JAZF1, a relevant metabolic regulator in type 2 diabetes. Diabetes Metab Res Rev. 2019 Jul;35(5):e3148. https://doi.org/10.1002/dmrr.3148
  5. Ferland-McCollough D, Fernandez-Twinn DS, Cannell IG, David H, Warner M, Vaag AA, et al. Programming of adipose tissue miR-483-3p and GDF-3 expression by maternal diet in type 2 diabetes. Cell Death Differ. 2012 Jun;19(6):1003-12. https:// doi.org/10.1038/cdd.2011.183
  1. Nishino T, Horie T, Baba O, Sowa N, Hanada R, Kuwabara Y, et al. SREBF1/MicroRNA-33b Axis Exhibits Potent Effect on Unstable Atherosclerotic Plaque Formation In Vivo. Arterioscler Thromb Vasc Biol. 2018 Oct;38(10):2460-73. https://doi. org/10.1161/atvbaha.118.311409
  2. Karunakaran D, Thrush AB, Nguyen M-A, Richards L, Geoffrion M, Singaravelu R, et al. Macrophage Mitochondrial Energy Status Regulates Cholesterol Efflux and Is Enhanced by Anti-miR33 in Atherosclerosis. Circ 2015 Jul 17;117(3):266-78. https://doi.org/10.1161/circresaha.117.305624
  3. Hoseini Z, Sepahvand F, Rashidi B, Sahebkar A, Masoudifar A, Mirzaei H. et al. NLRP3 inflammasome: Its regulation and involvement in atherosclerosis. J Cell 2018 Mar;233(3):2116-
  4. https://doi.org/10.1002/jcp.25930
  5. Hu YW, Hu YR, Zhao JY, Li SF, Ma X, Wu SG, et
  6. An agomir of miR-144-3p accelerates plaque formation through impairing reverse cholesterol transport and promoting pro-inflammatory cytokine production. PLoS One. 2014 Apr 14;9(4):e94997. https://doi.org/10.1371/journal.pone.0094997
  7. Huang N, Wang J, Xie W, Lyu Q, Wu J, He J, et al. MiR-378a-3p enhances adipogenesis by targeting mitogen-activated protein kinase 1. Biochem Biophys Res 2015 Jan 30;457(1):37-42. https://doi. org/10.1016/j.bbrc.2014.12.055
  8. Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, et al. microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res 2009 Dec 11;390(2):247-51. https://doi.org/10.1016/j. bbrc.2009.09.098
  9. Lee EK, Lee MJ, Abdelmohsen K, Kim W, Kim MM, Srikantan S, et al. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator- activated receptor gamma Mol Cell Biol. 2011 Feb;31(4):626-38. https://doi.org/10.1128/ mcb.00894-10
  10. Fan W. Epidemiology in diabetes mellitus and cardiovascular Cardiovasc Endocrinol. 2017 Feb 15;6(1):8-16. https://doi.org/10.1097%2FX CE.0000000000000116
  11. Czajka P, Fitas A, Jakubik D, Eyileten C, Gasecka A, Wicik Z, et MicroRNA as Potential Biomarkers of Platelet Function on Antiplatelet Therapy: A Review. Front Physiol. 2021 Apr 15;12:652579. https://doi. org/10.3389/fphys.2021.652579
  12. Wicik Z, Czajka P, Eyileten C, Fitas A, Wolska M, Jakubik D, et al. The role of miRNAs in regulation of platelet activity and related diseases - a bioinformatic analysis. Platelets. 2022 Oct 3;33(7):1052-64. https:// doi.org/10.1080/09537104.2022.2042233
  1. Legrand V. Therapy insight: diabetes and drug- eluting Nat Clin Pract Cardiovasc Med. 2007 Mar;4(3):143-50. https://doi.org/10.1038/ ncpcardio0804
  2. Leierseder S, Petzold T, Zhang L, Loyer X, Massberg S, Engelhardt S. MiR-223 is dispensable for platelet production and function in Thromb Haemost. 2013 Dec;110(6):1207-14. https://doi.org/10.1160/ th13-07-0623
  3. Elgheznawy A, Shi L, Hu J, Wittig I, Laban H, Pircher J, et Dicer cleavage by calpain determines platelet microRNA levels and function in diabetes. Circ Res. 2015 Jul 3;117(2):157-65. https://doi.org/10.1161/ circresaha.117.305784
  4. Fejes Z, Póliska S, Czimmerer Z, Káplár M, Penyige A, Szabó GG, et al. Hyperglycaemia suppresses microRNA expression in platelets to increase P2RY12 and SELP levels in type 2 diabetes Thromb Haemost. 2017 Feb 28;117(3):529-42. https://doi.org/10.1160/th16-04-0322
  5. Zampetaki A, Willeit P, Tilling L, Drozdov I, Prokopi M, Renard JM, et Prospective study on circulating MicroRNAs and risk of myocardial infarction. J Am Coll Cardiol. 2012 Jul 24;60(4):290-9. https://doi. org/10.1016/j.jacc.2012.03.056
  6. Graubardt N, Vugman M, Mouhadeb O, Caliari G, Pasmanik-Chor M, Reuveni D, et al. Ly6Chi Monocytes and Their Macrophage Descendants Regulate Neutrophil Function and Clearance in Acetaminophen-Induced Liver Injury. Front Immunol. 2017 Jun 1;8:626. https://doi. org/10.3389/fimmu.2017.00626
  7. Duan X, Zhan Q, Song B, Zeng S, Zhou J, Long Y, et Detection of platelet microRNA expression in patients with diabetes mellitus with or without ischemic stroke. J Diabetes Complications. 2014 Sep-Oct;28(5):705-10. https://doi.org/10.1016/j. jdiacomp.2014.04.012
  8. Luo M, Li R, Ren M, Chen N, Deng X, Tan X, et Hyperglycaemia-induced reciprocal changes in miR- 30c and PAI-1 expression in platelets. Sci Rep. 2016 Nov 7;6:36687. https://doi.org/10.1038/srep36687
  9. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008 Aug;15(2):272-84. https://doi.org/10.1016/j. 2008.07.008
  10. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008 Aug;15(2):261-71. https://doi. org/10.1016/j.devcel.2008.07.002
  1. Ye EA, Steinle JJ. miR-15b/16 protects primary human retinal microvascular endothelial cells against hyperglycemia-induced increases in tumor necrosis factor alpha and suppressor of cytokine signaling J Neuroinflammation. 2015 Mar 4;12:44. https://doi. org/10.1186/s12974-015-0265-0
  2. Falanga Wound healing and its impairment in the diabetic foot. Lancet. 2005 Nov 12;366(9498):1736- https://doi.org/10.1016/s0140-6736(05)67700-8
  1. Dangwal S, Stratmann B, Bang C, Lorenzen JM, Kumarswamy R, Fiedler J, et al. Impairment of Wound Healing in Patients With Type 2 Diabetes Mellitus Influences Circulating MicroRNA Patterns via Inflammatory Cytokines. Arterioscler Thromb Vasc Biol. 2015 Jun;35(6):1480-8. https://doi. org/10.1161/atvbaha.114.305048
  2. Huo Y, Ley Role of platelets in the development of atherosclerosis. Trends Cardiovasc Med. 2004 Jan;14(1):18-22. https://doi.org/10.1016/j. tcm.2003.09.007
  3. Schneider MF, Fallah MA, Mess C, Obser T, Schneppenheim R, Alexander-Katz A, et al. Platelet adhesion and aggregate formation controlled by immobilised and soluble VWF. BMC Mol Cell Biol. 2020 Sep 11;21(1):64. https://doi.org/10.1186/ s12860-020-00309-7
  4. Massberg S, Brand K, Grüner S, Page S, Müller E, Müller I, et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med. 2002 Oct 7;196(7):887-96. https://doi. org/10.1084/jem.20012044
  1. Badimon L, Padró T, Vilahur G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart Eur Heart J Acute Cardiovasc Care. 2012 Apr;1(1):60-74. https://doi. org/10.1177/2048872612441582
  2. Pan Y, Liang H, Liu H, Li D, Chen X, Li L, et al. Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin- like growth factor 1 J Immunol. 2014 Jan 1;192(1):437-46. https://doi.org/10.4049/ jimmunol.1301790
  3. Li J, Tan M, Xiang Q, Zhou Z, Yan H. Thrombin- activated platelet-derived exosomes regulate endothelial cell expression of ICAM-1 via microRNA-223 during the thrombosis-inflammation response. Thromb Res. 2017 Jun;154:96-105. https://doi.org/10.1016/j.thromres.2017.04.016
  4. Bavendiek U, Libby P, Kilbride M, Reynolds R, Mackman N, Schönbeck U. Induction of tissue factor expression in human endothelial cells by CD40 ligand is mediated via activator protein 1, nuclear factor kappa B, and Egr-1. J Biol 2002 Jul 12;277(28):25032-9. https://doi.org/10.1074/ jbc.m204003200
  5. Lovren F, Pan Y, Quan A, Singh KK, Shukla PC, Gupta N, et al. MicroRNA-145 targeted therapy reduces atherosclerosis. Circulation. 2012 Sep 11;126(11 Suppl 1):S81-S90. https://doi. org/10.1161/circulationaha.111.084186
  6. Shan Z, Qin S, Li W, Wu W, Yang J, Chu M, et al. An Endocrine Genetic Signal Between Blood Cells and Vascular Smooth Muscle Cells: Role of MicroRNA-223 in Smooth Muscle Function and Atherogenesis. J Am Coll Cardiol. 2015 Jun 16;65(23):2526-37. https://doi.org/10.1016%2Fj. 2015.03.570
  7. Chen L, Wang J, Wang B, Yang J, Gong Z, Zhao X, et al. MiR-126 inhibits vascular endothelial cell apoptosis through targeting PI3K/Akt signaling. Ann Hematol. 2016 Feb;95(3):365-74. https://doi. org/10.1007/s00277-015-2567-9
  8. Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J, et al. MicroRNA-126- 5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med. 2014 Apr;20(4):368-76. https://doi.org/10.1038/ 3487
  9. Zhang Y, Liu YJ, Liu T, Zhang H, Yang SJ. Plasma microRNA-21 is a potential diagnostic biomarker of acute myocardial Eur Rev Med Pharmacol Sci. 2016;20(2):323-9.
  10. Liu X, Dong Y, Chen S, Zhang G, Zhang M, Gong Y, et al. Circulating MicroRNA-146a and MicroRNA-21 Predict Left Ventricular Remodeling after ST-Elevation Myocardial Infarction. Cardiology. 2015;132(4):233-41. https://doi. org/10.1159/000437090
  11. Szelenberger R, Karbownik MS, Kacprzak M, Maciak K, Bijak M, Zielińska M, et al. Screening Analysis of Platelet miRNA Profile Revealed miR-142-3p as a Potential Biomarker in Modeling the Risk of Acute Coronary Cells. 2021 Dec 14;10(12):3526. https://doi.org/10.3390/cells10123526
  12. Zhang Q, Liu S, Zhang J, Ma X, Dong M, Sun B, et Roles and regulatory mechanisms of miR- 30b in cancer, cardiovascular disease, and metabolic disorders (Review). Exp Ther Med. 2021 Jan;21(1):44. https://doi.org/10.3892/etm.2020.9475
  13. Chapnik E, Rivkin N, Mildner A, Beck G, Pasvolsky R, Metzl-Raz E, et miR-142 orchestrates a network of actin cytoskeleton regulators during megakaryopoiesis. Elife. 2014 May 23;3:e01964. https://doi.org/10.7554/elife.01964
  1. Gao J, Gu J, Pan X, Gan X, Ju Z, Zhang S, et al. Blockade of miR-142-3p promotes anti-apoptotic and suppressive function by inducing KDM6A- mediated H3K27me3 demethylation in induced regulatory T cells. Cell Death Dis. 2019 Apr 15;10(5):332. https://doi.org/10.1038/s41419-019-1565-6
  1. Opal SM, Garber GE, LaRosa SP, Maki DG, Freebairn RC, Kinasewitz GT, et al. Systemic host responses in severe sepsis analyzed by causative microorganism and treatment effects of drotrecogin alfa (activated). Clin Infect 2003 Jul 1;37(1):50-8. https://doi.org/10.1086/375593
  2. Nagalla S, Shaw C, Kong X, Kondkar AA, Edelstein LC, Ma L, et al. Platelet microRNA-mRNA coexpression profiles correlate with platelet Blood. 2011 May 12;117(19):5189-97. https://doi. org/10.1182/blood-2010-09-299719
  3. Gidlöf O, Van Der Brug M, Öhman J, Gilje P, Olde B, Wahlestedt C, et al. Gidlöf O, van der Brug M, Ohman J, Gilje P, Olde B, Wahlestedt C, Erlinge
  4. Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood. 2013 May 9;121(19):3908-17, S1-26. https://doi.org/10.1182/blood-2012-10-461798
  1. Liu WW, Wang H, Chen XH, Fu SW, Liu miR-34b- 3p May Promote Antiplatelet Efficiency of Aspirin by Inhibiting Thromboxane Synthase Expression. Thromb Haemost. 2019 Sep;119(9):1451-60. https://doi.org/10.1055/s-0039-1692681
  2. Singh S, de Ronde MW, Creemers EE, Van der Made I, Meijering R, Chan MY, et al. Low miR-19b-1-5p Expression Is Related to Aspirin Resistance and Major Adverse Cardio- Cerebrovascular Events in Patients With Acute Coronary Syndrome. J Am Heart 2021 Jan 19;10(2):e017120. https://doi. org/10.1161/jaha.120.017120
  3. Kondkar A, Bray M, Leal S, Nagalla S, Liu D, Jin Y, et al. VAMP8/endobrevin is overexpressed in hyperreactive human platelets: suggested role for platelet microRNA. J Thromb Haemost. 2010 Feb;8(2):369-78. https://doi.org/10.1111/j.1538- 2009.03700.x
  4. Basak I, Bhatlekar S, Manne BK, Stoller M, Hugo S, Kong X, et al. miR-15a-5p regulates expression of multiple proteins in the megakaryocyte GPVI signaling J Thromb Haemost. 2019 Mar;17(3):511-24. https://doi.org/10.1111/jth.14382
  5. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008 Dec 18;456(7224):980-4. https://doi.org/10.1038/nature07511
  1. Rodosthenous RS, Kloog I, Colicino E, Zhong J, Herrera LA, Vokonas P, et al. Extracellular vesicle-enriched microRNAs interact in the association between long-term particulate matter and blood pressure in elderly men. Environ Res. 2018 Nov;167:640-49. https://doi.org/10.1016/j. 2018.09.002
  2. Miao X, Rahman MU, Jiang L, Min Y, Tan S, Xie H, et Thrombin-reduced miR-27b attenuates platelet angiogenic activities in vitro via enhancing platelet synthesis of anti-angiogenic thrombospondin-1. J Thromb Haemost. 2018 Apr;16(4):791-801. https:// doi.org/10.1111/jth.13978
  3. Zhang L, Cao H, Gu G, Hou D, You Y, Li X, et al. Exosomal MiR-199a-5p Inhibits Tumorigenesis and Angiogenesis by Targeting VEGFA in Front Oncol. 2022 May 16;12:884559. https://doi. org/10.3389/fonc.2022.884559
  4. Barwari T, Eminaga S, Mayr U, Lu R, Armstrong PC, Chan MV, et al. Inhibition of profibrotic microRNA-21 affects platelets and their releasate. JCI Insight. 2018 Nov 2;3(21):e123335. https://doi. org/10.1172/jci.insight.123335
  5. Yang Y, Luo H, Liu S, Zhang R, Zhu X, Liu M, et Platelet microparticles-containing miR-4306 inhibits human monocyte-derived macrophages migration through VEGFA/ERK1/2/NF-κB signaling pathways. Clin Exp Hypertens. 2019;41(5):481-91. https://doi.org/10.1080/10641963.2018.1510941
  6. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993 Dec 3;75(5):843-54. https://doi.org/10.1016/0092-8674(93)90529-y
  1. La Marca V, Fierabracci Insights into the Diagnostic Potential of Extracellular Vesicles and Their miRNA Signature from Liquid Biopsy as Early Biomarkers of Diabetic Micro/Macrovascular Complications. Int J Mol Sci. 2017 Sep 14;18(9):1974. https://doi. org/10.3390/ijms18091974
  2. Zhang Y, Wang Y, Zhang L, Xia L, Zheng M, Zeng Z, et al. Reduced Platelet miR-223 Induction in Kawasaki Disease Leads to Severe Coronary Artery Pathology Through a miR-223/PDGFRβ Vascular Smooth Muscle Cell Axis. Circ Res. 2020 Sep 11;127(7):855-73. https://doi.org/10.1161/ 120.316951
  3. Shi R, Zhou X, Ji WJ, Zhang YY, Ma YQ, Zhang JQ, et The Emerging Role of miR-223 in Platelet Reactivity: Implications in Antiplatelet Therapy. Biomed Res Int. 2015;2015:981841.
  1. Devaux Y, Mueller M, Haaf P, Goretti E, Twerenbold R, Zangrando J, et al. Diagnostic and prognostic value of circulating microRNAs in patients with acute chest J Intern Med. 2015 Feb;277(2):260-
  2. https://doi.org/10.1111/joim.12183
  3. Eyileten C, Jakubik D, Shahzadi A, Gasecka A, van der Pol E, De Rosa S, et Diagnostic Performance of Circulating miRNAs and Extracellular Vesicles in Acute Ischemic Stroke. Int J Mol Sci. 2022 Apr 20;23(9):4530. https://doi.org/10.3390/ ijms23094530
  4. Diehl P, Fricke A, Sander L, Stamm J, Bassler N, Htun N, et al. Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovasc Res. 2012 Mar 15;93(4):633-44. https:// org/10.1093%2Fcvr%2Fcvs007
  5. Zhang Y, Liu YJ, Liu T, Zhang H, Yang SJ. Plasma microRNA-21 is a potential diagnostic biomarker of acute myocardial Eur Rev Med Pharmacol Sci. 2016;20(2):323-9.
  6. Masoodi Khabar P, Ghydari ME, Vazifeh Shiran N, Shirazy M, Hamidpour M. Platelet MicroRNA-484 as a Novel Diagnostic Biomarker for Acute Coronary Syndrome. Lab Med. 2023 May 2;54(3):256-61. https://doi.org/10.1093/labmed/lmac102
  7. Li S, Lee C, Song J, Lu C, Liu J, Cui Y, et Circulating microRNAs as potential biomarkers for coronary plaque rupture. Oncotarget. 2017 Jul 18;8(29):48145-https://doi.org/10.18632/oncotarget.18308
  8. Stojkovic S, Nossent AY, Haller P, Jäger B, Vargas KG, Wojta J, et MicroRNAs as Regulators and Biomarkers of Platelet Function and Activity in Coronary Artery Disease. Thromb Haemost. 2019 Oct;119(10):1563-72. https://doi. org/10.1055/s-0039-1693702
  9. Pordzik J, Pisarz K, De Rosa S, Jones AD, Eyileten C, Indolfi C, et The Potential Role of Platelet-Related microRNAs in the Development of Cardiovascular Events in High-Risk Populations, Including Diabetic Patients: A Review. Front Endocrinol (Lausanne). 2018 Mar 20;9:74. https://doi.org/10.3389/ fendo.2018.00074
  10. Namino F, Yamakuchi M, Iriki Y, Okui H, Ichiki H, Maenosono R, et al. Dynamics of Soluble Thrombomodulin and CirculatingmiRNAs in Patients with Atrial Fibrillation Undergoing Radiofrequency Catheter Ablation. Clin Appl Thromb Hemost. 2019 Jan-Dec;25:1076029619851570. https://doi. org/10.1177/1076029619851570
  11. Krause BJ, Carrasco-Wong I, Dominguez A, Arnaiz P, Farias M, Barja S, et al. Micro-RNAs Let7e and 126 in Plasma as Markers of Metabolic Dysfunction in 10 to 12 Years Old Children. PLoS One. 2015 Jun 5;10(6):e0128140. https://doi.org/10.1371/journal. pone.0128140
  1. de Boer HC, van Solingen C, Prins J, Duijs JM, Huisman MV, Rabelink TJ, et al. Aspirin treatment hampers the use of plasma microRNA-126 as a biomarker for the progression of vascular disease. Eur Heart J. 2013 Nov;34(44):3451-7. https://doi. org/10.1093/eurheartj/eht007
  2. Stojkovic S, Wadowski PP, Haider P, Weikert C, Pultar J, Lee S, et Circulating MicroRNAs and Monocyte- Platelet Aggregate Formation in Acute Coronary Syndrome. Thromb Haemost. 2021 Jul;121(7):913-
  3. https://doi.org/10.1055/s-0040-1722226
  4. Karakas M, Schulte C, Appelbaum S, Ojeda F, Lackner KJ, Münzel T, et Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease-results from the large AtheroGene study. Eur Heart J. 2017 Feb 14;38(7):516-23. https://doi.org/10.1093/eurheartj/ehw250
  5. Schulte C, Molz S, Appelbaum S, Karakas M, Ojeda F, Lau DM, et al. miRNA-197 and miRNA-223 Predict Cardiovascular Death in a Cohort of Patients with Symptomatic Coronary Artery Disease. PLoS One. 2015 Dec 31;10(12):e0145930. https://doi. org/10.1371/journal.pone.0145930
  6. Jakob P, Kacprowski T, Briand-Schumacher S, Heg D, Klingenberg R, Stähli BE, et al. Profiling and validation of circulating microRNAs for cardiovascular events in patients presenting with ST- segment elevation myocardial Eur Heart J. 2017 Feb 14;38(7):511-5. https://doi.org/10.1093/ eurheartj/ehw563
  7. Li X, Yao Q, Cui H, Yang J, Wu N, Liu Y, et al. MiR-223 or miR-126 predicts resistance to dual antiplatelet therapy in patients with ST- elevation myocardial infarction. J Int Med Res. 2021 Jun;49(6):3000605211016209. https://doi. org/10.1177%2F03000605211016209
  8. Siasos G, Kollia C, Tsigkou V, Basdra EK, Lymperi M, Oikonomou E, et MicroRNAs: Novel diagnostic and prognostic biomarkers in atherosclerosis. Curr Top Med Chem. 2013;13(13):1503-17. https://doi.or g/10.2174/15680266113139990099
  9. Ma X, Ma C, Zheng X. MicroRNA-155 in the pathogenesis of atherosclerosis: a conflicting role? Heart Lung Circ. 2013 Oct;22(10):811-8. https:// org/10.1016/j.hlc.2013.05.651
  10. Zhao W, Zhao SP, Zhao YH. MicroRNA-143/-145 in Cardiovascular      Biomed Res Int. 2015;2015:531740. https://doi. org/10.1155%2F2015%2F531740
  11. Son D, Kumar S, Takabe W, Kim C, Ni C, Alberts-Grill N, et The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat Commun. 2013;4:3000. https://doi.org/10.1038/ncomms4000
  12. Willeit P, Skroblin P, Moschen AR, Yin X, Kaudewitz D, Zampetaki A, et al. Circulating MicroRNA-122 Is Associated With the Risk of New-Onset Metabolic Syndrome and Type 2 Diabetes. 2017 Feb;66(2):347-57. https://doi. org/10.2337%2Fdb16-0731
  13. Xu Y, Xu Y, Zhu Y, Sun H, Juguilon C, Li F, et al. Macrophage miR-34a Is a Key Regulator of Cholesterol Efflux and Atherosclerosis. Mol Ther. 2020 Jan 8;28(1):202-16. https://doi.org/10.1016/j. 2019.09.008
  14. Wang X, Sundquist K, Svensson PJ, Rastkhani H, Palmér K, Memon AA, et al. Association of recurrent venous thromboembolism and circulating microRNAs. Clin 2019 Feb 13;11(1):28. https://doi.org/10.1186/s13148-019-0627-z
  15. Tijsen AJ, Creemers EE, Moerland PD, de Windt LJ, van der Wal AC, Kok WE, et al. MiR423-5p as a circulating biomarker for heart failure. Circ Res. 2010 Apr 2;106(6):1035-9. https://doi.org/10.1161/ 110.218297
  16. Zhang E, Wu MicroRNAs: important modulators of oxLDL-mediated signaling in atherosclerosis. J Atheroscler Thromb. 2013;20(3):215-27. https:// doi.org/10.5551/jat.15180
  17. Zietzer A, Al-Kassou B, Jamme P, Rolfes V, Steffen E, Bulic M, et Large extracellular vesicles in the left atrial appendage in patients with atrial fibrillation-the missing link? Clin Res Cardiol. 2022 Jan;111(1):34-
  18. https://doi.org/10.1007/s00392-021-01873-4
  19. Wang DL, Li X, Wang RN, Sun Y, Xia XS, Tian WJ, et A study of microRNA-223 in evaluating platelet reactivity in patients with acute ischemic stroke. J Physiol Pharmacol. 2022 Feb;73(1). https://doi. org/10.26402/jpp.2022.1.11
  20. Szelenberger R, Karbownik MS, Kacprzak M, Synowiec E, Michlewska S, Bijak M, et al. Dysregulation in the Expression of Platelet Surface Receptors in Acute Coronary Syndrome Patients-Emphasis on P2Y12. Biology (Basel). 2022 Apr 22;11(5):644.https://doi.org/10.3390%2Fbiology11050644
  1. Singh S, de Ronde MWJ, Creemers EE, Van der Made I, Meijering R, Chan MY, et Low miR-19b- 1-5p Expression Is Related to Aspirin Resistance and Major Adverse Cardio- Cerebrovascular Events in Patients With Acute Coronary Syndrome. J Am Heart Assoc. 2021 Jan 19;10(2):e017120. https://doi. org/10.1161/jaha.120.017120
  2. Mukaihara K, Yamakuchi M, Kanda H, Shigehisa Y, Arata K, Matsumoto K, et al. Evaluation of VEGF-A in platelet and microRNA-126 in serum after coronary artery bypass grafting. Heart Vessels. 2021 Nov;36(11):1635-45. https://doi.org/10.1007/ s00380-021-01855-6
  3. Liu YL, Hu XL, Song PY, Li H, Li MP, Du YX, et Influence of GAS5/MicroRNA-223-3p/P2Y12 Axis on Clopidogrel Response in Coronary Artery Disease. J Am Heart Assoc. 2021 Nov 2;10(21):e021129. https://doi.org/10.1161/jaha.121.021129
  4. Lin S, Xu X, Hu H, Cheng J, Chen R, Hu Y, et al. The expression profile of platelet-derived miRNA in coronary artery disease patients with clopidogrel Pharmacol Res Perspect. 2021;9(2):e00751. https://doi.org/10.1002/prp2.751
  5. Ding T, Zeng X, Cheng B, Ma X, Yuan H, Nie X, et al. Platelets in Acute Coronary Syndrome Patients with High Platelet Reactivity after Dual Antiplatelet Therapy Exhibit Upregulation of miR-204-5p. Ann Clin Lab Sci. 2019 Sep;49(5):619-31.
  6. Chen YC, Lin FY, Lin YW, Cheng SM, Chang CC, Lin RH, et al. Platelet MicroRNA 365-3p Expression Correlates with High On-treatment Platelet Reactivity in Coronary Artery Disease Patients. Cardiovasc Drugs Ther. 2019 Apr;33(2):129-37. https://doi. org/10.1007/s10557-019-06855-3
  1. Kanuri SH, Ipe J, Kassab K, Gao H, Liu Y, Skaar TC, et al. Next generation MicroRNA sequencing to identify coronary artery disease patients at risk of recurrent myocardial infarction. Atherosclerosis. 2018 Nov;278:232-9. https://doi.org/10.1016/j. 2018.09.021
  2. Li S, Guo LZ, Kim MH, Han JY, Serebruany V. Platelet microRNA for predicting acute myocardial infarction. J Thromb Thrombolysis. 2017 Nov;44(4):556-64. https://doi.org/10.1007/s11239- 017-1537-6

153. Goren Y, Meiri E, Hogan C, Mitchell H, Lebanony D, Salman N, et al. Relation of reduced expression of MiR-150 in platelets to atrial fibrillation in patients with chronic systolic heart failure. Am J Cardiol. 2014 Mar 15;113(6):976-81. https://doi.org/10.1016/j. amjcard.2013.11.060