Document Type : Original Article(s)

Authors

1 Department of Hematology and Blood Banking, School of Allied Medical Sciences Shahid Beheshti University of Medical Sciences, Tehran, Iran

2 HSC Research Center-Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical sciences, Tehran, Iran

3 Department of Laboratory Sciences, School of Allied Medical Sciences Alborz University of Medical Sciences, Karaj, Iran

Abstract

Background: The accumulation of oxidized LDL (ox-LDL) in macrophages in association with platelet activity leads to the formation of foam cells, which play a key role in the pathophysiology of atherosclerosis and coronary artery diseases (CAD). Here, in this study, we aimed to investigate the simultaneous effect of ox-LDL and platelets on foam cell formation, as well as modification in cell markers. 
Methods: First, the U937, a human monocytic cell line,  was cultured in RPMI-1640. Then, isolated platelets were co-cultured with the U937 and exposed to ox-LDL (80 µg/ml) to evaluate the impact of ox-LDL on foam cell formation using Oil red O (ORO) staining. Also, the expression of foam cells’ surface markers and CD36, ABCA1, SR-B1, ACAT1, and LXRα genes, which are involved in macrophage metabolism and ox-LDL uptake, was measured by flow cytometry and real-time PCR, respectively. 
Results: Our findings suggest that platelets promoted foam cell formation (ORO-positive cells), accompanied by a higher level of CD163+ M2 macrophages. Furthermore, the expression of CD36, ABCA1, SR-B1, ACAT1, and LXRα genes, which are implicated in cholesterol accumulation in macrophages, was significantly upregulated in the ox-LDL+ platelets group compared to the control (P < 0.05). Moreover, the up-regulation of CD36, ABCA1, and SR-B1 genes in the ox-LDL+ platelets group was more accentuated compared to the ox-LDL group (P < 0.05).
Conclusions: Owing to the positive effector role of platelets in the formation of foam cells and CD163+ cells, it could be assumed that platelets play a dual role in the development of these cells.

Highlights

The google scholar & Pubmed link  for Mohsen Hamidpour

Google Scholar

PubMed

 

Keywords

1.   Duan L, Xiong X, Hu J, Liu Y, Li J, Wang J. Panax notoginseng saponins for treating coronary artery disease: A functional and mechanistic overview. Front Pharmacol. 2017; 8: 702.
2. Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis. Annu Rev Immunol. 2009; 27: 165-97.
3. Singh RB, Mengi SA, Xu Y-J, Arneja AS, Dhalla NS. Pathogenesis of atherosclerosis: A multifactorial process. Exp Clin Cardiol. 2002; 7(1): 40.
4. Ghaffari MA, Shanaki M. Evalution of in vitro effect of flavonoids on human low-density lipoprotein carbamylation. Iran J pharm Res. 2010; 9(1): 67-74. 
5. Hamidpour M, Bashash D, Nehzati P, Abbasalizadeh M, Hamidpour R. The expression of hSR-B1 receptor on platelets of patients with coronary artery disease (CAD). Clin Hemorheol Microcirc. 2019; 71: 9-15
6. Michael DR, Ashlin TG, Buckley ML, Ramji DP. Macrophages, lipid metabolism and gene expression in atherogenesis: a therapeutic target of the future? Clin Lipidol. 2012; 7(1): 37-48.
7. Stöger JL, Gijbels MJ, van der Velden S, Manca M, van der Loos CM, Biessen EA, et al. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis. 2012; 225(2): 461-8.
8. Luo Y, Duan H, Qian Y, Feng L, Wu Z, Wang F, et al. Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Cell Res. 2017; 27(3): 352-372.
9. Hayden JM, Brachova L, Higgins K, Obermiller L, Sevanian A, Khandrika S, et al. Induction of monocyte differentiation and foam cell formation in vitro by 7-ketocholesterol. J Lipid Res. 2002; 43(1): 26-35.
10. Chatterjee M, von Ungern-Sternberg S, Seizer P, Schlegel F, Büttcher M, Sindhu N, et al. Platelet-derived CXCL12 regulates monocyte function, survival, differentiation into macrophages and foam cells through differential involvement of CXCR4–CXCR7. Cell Death Dis. 2015; 6(11): e1989.
11. Kral JB, Schrottmaier WC, Salzmann M, Assinger A. Platelet interaction with innate immune cells. Transfus Med Hemother. 2016; 43(2): 78-88.
12. Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest. 2005; 115(12): 3378-84.
13. Mehrpouri M, Bashash D, Mohammadi MH, Gheydari ME, Satlsar ES, Hamidpour M. Co-culture of platelets with monocytes induced M2 macrophage polarization and formation of foam cells: shedding light on the crucial role of platelets in monocyte differentiation. Turk J Haematol. 2019; 36(2): 97-105.
14. Gleissner CA. Macrophage phenotype modulation by CXCL4 in atherosclerosis. Front Physiol. 2012; 3: 1.
15. Badrnya S, Schrottmaier WC, Kral JB, Yaiw K-C, Volf I, Schabbauer G, et al. Platelets Mediate Oxidized Low-Density Lipoprotein–Induced Monocyte Extravasation and Foam Cell Formation. Arterioscler Thromb Vasc Biol. 2014; 34(3): 571-80.
16. Stellos K, Sauter R, Fahrleitner M, Grimm J, Stakos D, Emschermann F, et al. Binding of oxidized low-density lipoprotein on circulating platelets is increased in patients with acute coronary syndromes and induces platelet adhesion to vascular wall in vivo—brief report. Arterioscler Thromb Vasc Biol. 2012; 32(8): 2017-20.
17. Hamidpour M, Behrendt M, Griffiths B, Partridge L, Lindsey N. The isolation and characterisation of antiplatelet antibodies. Eur J Haematol. 2006; 76(4): 331-8.
18. McLaren JE, Michael DR, Ashlin TG, Ramji DP. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Prog Lipid Res. 2011; 50(4): 331-47.
19. Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. Mechanisms of foam cell formation in atherosclerosis. J Mol Med (Berl). 2017; 95(11): 1153-65.
20. Lievens D, von Hundelshausen P. Platelets in atherosclerosis. Thromb Haemost. 2011; 106(11): 827-38.
21. Bouhlel MA, Derudas B, Rigamonti E, Dièvart R, Brozek J, Haulon S, et al. PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab. 2007; 6(2): 137-43.
22. de Gaetano M, Alghamdi K, Marcone S, Belton O. Conjugated linoleic acid induces an atheroprotective macrophage MΦ2 phenotype and limits foam cell formation. J Inflamm (Lond). 2015; 12(1): 15.
23. Van Tits L, Stienstra R, Van Lent P, Netea M, Joosten L, Stalenhoef A. Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages: a crucial role for Krüppel-like factor 2. Atherosclerosis. 2011; 214(2): 345-9.
24. Schrijvers DM, De Meyer GR, Herman AG, Martinet W. Phagocytosis in atherosclerosis: Molecular mechanisms and implications for plaque progression and stability. Cardiovasc Res. 2007; 73(3): 470-80.
25. Chawla A, Boisvert WA, Lee C-H, Laffitte BA, Barak Y, Joseph SB, et al. A PPARγ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell. 2001; 7(1): 161-71.
26. Shen W-J, Asthana S, Kraemer FB, Azhar S. Scavenger receptor B type 1: expression, molecular regulation, and cholesterol transport function. J Lipid Res. 2018; 59(7): 1114-31.
27. Lei L, Xiong Y, Chen J, Yang J-B, Wang Y, Yang X-Y, et al. TNF-alpha stimulates the ACAT1 expression in differentiating monocytes to promote the CE-laden cell formation. J Lipid Res. 2009; 50(6): 1057-67.
28. Rana M, Kumar A, Tiwari RL, Singh V, Chandra T, Dikshit M, et al. IRAK regulates macrophage foam cell formation by modulating genes involved in cholesterol uptake and efflux. BioEssays. 2016; 38(7): 591-604.
29. Li Y, Yang JB, Jia C, Yu GY, Pei Z, Lei L, et al. Enhancement of human ACAT1 gene expression to promote the macrophage-derived foam cell formation by dexamethasone. Cell Res. 2004;14(4):315-323.
30. Su X-M, Wei Y, Wang Y, Zhang W. ABCA1 mRNA expression and cholesterol outflow in U937 cells. Int J Clin Exp Pathol. 2015; 8(3): 3116-3121.
31. He Y, Zhang L, Li Z, Gao H, Yue Z, Liu Z, et al. RIP140 triggers foam‐cell formation by repressing ABCA1/G1 expression and cholesterol efflux via liver X receptor. FEBS Lett. 2015; 589(4): 455-60.
32. Ma Q, Zhang XM, Jiang JG, Zhu W. Apigenin-7-O-β-D-glucuronide inhibits modified low-density lipoprotein uptake and foam cell formation in macrophages. J Funct Foods. 2017; 35: 615-21.