Document Type : Original Article

Authors

1 Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran

2 Department of Biostatistics and Epidemiology, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran

3 Cardiac Rehabilitation Research center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran

4 Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA

5 Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA

6 Institute for Physical Activity and Nutrition, Deakin University, Geelong, Australia

Abstract

BACKGROUND: Diet is an important risk factor for ischemic heart disease (IHD), but its effects on IHD and trends in the North Africa and Middle East (NAME) region are unknown. We aimed to evaluate the burden of different dietary risk factors on mortality and disability-adjusted life-years (DALYs) attributable to IHD in the NAME region from 1990 to 2019. 
METHODS: The data and estimations were extracted from the Global Burden of Disease (GBD) 2019 Global Health Data Exchange. The proportion of IHD burden due to dietary risks was estimated through a comparative risk assessment approach. We calculated the mortality and DALYs rate attributable to diet for IHD using disease-specific population attributable fractions.
RESULTS: The age-standardized rate of IHD mortality and DALYs attributed to dietary risk in the NAME region were 102.1 (95% uncertainty interval (UI): 81.0–121.1) and 2060.6 (95% UI: 1630.7–2471.2), respectively. These rates were higher than the global estimates for mortality (62.4 [95% UI: 51.0–73.6]) and DALYs (1271.3 [95% UI: 1061.3–1473.8]) and were greater in men than in women. Suboptimal diet contributed to 46.6% of IHD mortality and 49.5% of related DALYs. Low whole-grain intake was the leading dietary risk across all countries and years, responsible for 44.5 [95% UI: 18.6–57.1] IHD mortalities and 912.8 [95% UI: 369.7–1177.8] DALYs per 100,000.
CONCLUSION: Despite a decline in the burden of IHD attributable to diet in the NAME region, it remains substantially high. There exists considerable potential for enhancing dietary quality, particularly through the increased incorporation of whole grains.

Keywords

1. Safiri S, Karamzad N, Singh K, Carson-Chahhoud K, Adams C, Nejadghaderi SA, et al. Burden of ischemic heart disease and its attributable risk factors in 204 countries and territories, 1990-2019. Eur J Prev Cardiol. 2022 Mar 11;29(2):420-31. https://doi.org/10.1093/eurjpc/zwab213
2. Khan MA, Hashim MJ, Mustafa H, Baniyas MY, Al Suwaidi S, AlKatheeri R, et al. Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study. Cureus. 2020 Jul 23;12(7):e9349. https://doi.org/10.7759/cureus.9349
3. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol. 2020 Dec 22;76(25):2982-3021. https://doi.org/10.1016/j.jacc.2020.11.010
4. Nishida C, Uauy R, Kumanyika S, Shetty P. The joint WHO/FAO expert consultation on diet, nutrition and the prevention of chronic diseases: process, product and policy implications. Public Health Nutr. 2004 Feb;7(1A):245-50. https://doi.org/10.1079/phn2003592
5. Colditz GA. Overview of the epidemiology methods and applications: strengths and limitations of observational study designs. Crit Rev Food Sci Nutr. 2010;50 Suppl 1(s1):10-2. https://doi.org/10.1080/10408398.2010.526838
6. Micha R, Kalantarian S, Wirojratana P, Byers T, Danaei G, Elmadfa I, et al. Estimating the global and regional burden of suboptimal nutrition on chronic disease: methods and inputs to the analysis. Eur J Clin Nutr. 2012 Jan;66(1):119-29. https://doi.org/10.1038/ejcn.2011.147
7. Micha R, Shulkin ML, Peñalvo JL, Khatibzadeh S, Singh GM, Rao M, et al. Etiologic effects and optimal intakes of foods and nutrients for risk of cardiovascular diseases and diabetes: Systematic reviews and meta-analyses from the Nutrition and Chronic Diseases Expert Group (NutriCoDE). PLoS One. 2017 Apr 27;12(4):e0175149. https://doi.org/10.1371/journal.pone.0175149
8. Satija A, Yu E, Willett WC, Hu FB. Understanding nutritional epidemiology and its role in policy. Adv Nutr. 2015 Jan 15;6(1):5-18. https://doi.org/10.3945/an.114.007492
9. GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019 May 11;393(10184):1958-72.
10. O’Hearn M, Imamura F, Cudhea F, Onopa J, Reedy J, Shi P, et al. The state of diet quality globally: a systematic assessment of worldwide dietary patterns using the global dietary database (P10-045-19). Curr Dev Nutr. 2019;3:3013379. https://doi.org/10.1093/cdn/nzz034.P10-045-19
11. Bhandari B, Liu Z, Lin S, Macniven R, Akombi-Inyang B, Hall J, et al. Long-Term Consumption of 10 Food Groups and Cardiovascular Mortality: A Systematic Review and Dose Response Meta-Analysis of Prospective Cohort Studies. Adv Nutr. 2023 Jan;14(1):55-63. https://doi.org/10.1016/j.advnut.2022.10.010
12. Zhang B, Pu L, Zhao T, Wang L, Shu C, Xu S, et al. Global Burden of Cardiovascular Disease from 1990 to 2019 Attributable to Dietary Factors. J Nutr. 2023 Jun;153(6):1730-41. https://doi.org/10.1016/j.tjnut.2023.03.031
13. Dong C, Bu X, Liu J, Wei L, Ma A, Wang T. Cardiovascular disease burden attributable to dietary risk factors from 1990 to 2019: A systematic analysis of the Global Burden of Disease study. Nutr Metab Cardiovasc Dis. 2022 Apr;32(4):897-907. https://doi.org/10.1016/j.numecd.2021.11.012
14. Bahn R, El Labban S, Hwalla N. Impacts of shifting to healthier food consumption patterns on environmental sustainability in MENA countries. Sustain Sci. 2019;14:1131-46. https://doi.org/10.1007/s11625-018-0600-3
15. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012 Dec 15;380(9859):2224-60. https://doi.org/10.1016/s0140-6736(12)61766-8
16. Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S, Brauer M, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015 Dec 5;386(10010):2287-323. https://doi.org/10.1016/s0140-6736(15)00128-2
17. GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016 Oct 8;388(10053):1659-724. https://doi.org/10.1016/s0140-6736(16)31679-8
18. GBD 2016 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017 Sep 16;390(10100):1345-422. https://doi.org/10.1016/s0140-6736(17)32366-8
19. Schmidhuber J, Sur P, Fay K, Huntley B, Salama J, Lee A, et al. The Global Nutrient Database: availability of macronutrients and micronutrients in 195 countries from 1980 to 2013. Lancet Planet Health. 2018 Aug;2(8):e353-68. https://doi.org/10.1016/s2542-5196(18)30170-0
20. Plummer AL. International Classification of Diseases, Tenth Revision, Clinical Modification for the Pulmonary, Critical Care, and Sleep Physician. Chest. 2015 Nov;148(5):1353-60. https://doi.org/10.1378/chest.15-0487
21. Mokdad AH, Ballestros K, Echko M, Glenn S, Olsen HE, Mullany E, et al. The State of US Health, 1990-2016: Burden of Diseases, Injuries, and Risk Factors Among US States. JAMA. 2018 Apr 10;319(14):1444-72. https://doi.org/10.1001/jama.2018.0158
22. GBD 2019 Healthcare Access and Quality Collaborators. Assessing performance of the Healthcare Access and Quality Index, overall and by select age groups, for 204 countries and territories, 1990-2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet Glob Health. 2022 Dec;10(12):e1715-43. https://doi.org/10.1016/s2214-109x(22)00429-6
23. Li M, Li X, Zhao Y, Zhang L, Yang J, Zhou M, Wang Z. The burden of ischemic heart disease and type 2 diabetes mellitus attributable to diet high in sugar-sweetened beverages in China: An analysis for the Global Burden of Disease Study 2017. J Diabetes. 2021 Jun;13(6):482-93. https://doi.org/10.1111/1753-0407.13132
24. GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017 Sep 16;390(10100):1151-210. https://doi.org/10.1016/s0140-6736(17)32152-9
25. Patnode CD, Evans CV, Senger CA, Redmond N, Lin JS. Behavioral Counseling to Promote a Healthful Diet and Physical Activity for Cardiovascular Disease Prevention in Adults Without Known Cardiovascular Disease Risk Factors: Updated Systematic Review for the U.S. Preventive Services Task Force [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2017 Jul. Report No.: 15-05222-EF-1.
26. Lumme S, Sund R, Leyland AH, Keskimäki I. A Monte Carlo method to estimate the confidence intervals for the concentration index using aggregated population register data. Health Serv Outcomes Res Methodol. 2015;15(2):82-98. https://doi.org/10.1007/s10742-015-0137-1
27. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2022. Available from: https://www.R-project.org/
28. World Health Organization. Global action plan for the prevention and control of noncommunicable diseases 2013-2020. Geneva: WHO; 2013.
29. Juárez-Chairez MF, Meza-Márquez OG, Márquez-Flores YK, Jiménez-Martínez C. Potential anti-inflammatory effects of legumes: a review. Br J Nutr. 2022 Dec 14;128(11):2158-69. https://doi.org/10.1017/s0007114522000137
30. Călinoiu LF, Vodnar DC. Whole Grains and Phenolic Acids: A Review on Bioactivity, Functionality, Health Benefits and Bioavailability. Nutrients. 2018 Nov 1;10(11):1615. https://doi.org/10.3390/nu10111615
31. Mohammadifard N, Haghighatdoost F, Mansourian M, Hassannejhad R, Sadeghi M, Roohafza H, et al. Long-term association of nut consumption and cardiometabolic risk factors. Nutr Metab Cardiovasc Dis. 2019 Sep;29(9):972-82. https://doi.org/10.1016/j.numecd.2019.04.014
32. Hajihashemi P, Haghighatdoost F. Effects of Whole-Grain Consumption on Selected Biomarkers of Systematic Inflammation: A Systematic Review and Meta-analysis of Randomized Controlled Trials. J Am Coll Nutr. 2019 Mar-Apr;38(3):275-85. https://doi.org/10.1080/07315724.2018.1490935
33. Nair SC, Ibrahim H, Celentano DD. Clinical trials in the Middle East and North Africa (MENA) Region: grandstanding or grandeur? Contemp Clin Trials. 2013 Nov;36(2):704-10. https://doi.org/10.1016/j.cct.2013.05.009
34. Sudan U. Nutrition Annual Report. Sudan: UNICEF; 2019.
35. Eroğlu AG. Malnutrition and the heart. Turk Pediatri Ars. 2019 Sep 25;54(3):139-40. https://doi.org/10.14744/TurkPediatriArs.2019.03764
36. Micha R, Khatibzadeh S, Shi P, Fahimi S, Lim S, Andrews KG, et al. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys. 2014;348. https://doi.org/10.1136/bmj.g2272
37. Al-Jawaldeh A, Taktouk M, Chatila A, Naalbandian S, Abdollahi Z, Ajlan B, et al. A Systematic Review of Trans Fat Reduction Initiatives in the Eastern Mediterranean Region. Front Nutr. 2021 Nov 26;8:771492. https://doi.org/10.3389/fnut.2021.771492
38. Abdul Rahman O M. Change in dietary habits, lifestyle and trend in diseases in the GCC countries. 1998.
39. Kayan-Fadlelmula F, Sellami A, Abdelkader N, Umer S. A systematic review of STEM education research in the GCC countries: trends, gaps and barriers. Int J STEM Educ. 2022;9(1):1-24. https://doi.org/10.1186/s40594-021-00319-7
40. Gwon JG, Choi J, Han YJ. Community-level socioeconomic inequality in the incidence of ischemic heart disease: a nationwide cohort study. BMC Cardiovasc Disord. 2020 Feb 22;20(1):87. https://doi.org/10.1186/s12872-020-01389-1
41. Kawakami N, Winkleby M, Skog L, Szulkin R, Sundquist K. Differences in neighborhood accessibility to health-related resources: a nationwide comparison between deprived and affluent neighborhoods in Sweden. Health Place. 2011 Jan;17(1):132-9. https://doi.org/10.1016/j.healthplace.2010.09.005
42. Cooper RA, Cooper MA, McGinley EL, Fan X, Rosenthal JT. Poverty, wealth, and health care utilization: a geographic assessment. J Urban Health. 2012 Oct;89(5):828-47. https://doi.org/10.1007/s11524-012-9689-3
43. Mayén AL, Marques-Vidal P, Paccaud F, Bovet P, Stringhini S. Socioeconomic determinants of dietary patterns in low- and middle-income countries: a systematic review. Am J Clin Nutr. 2014 Dec;100(6):1520-31. https://doi.org/10.3945/ajcn.114.089029
44. Bjornstrom EE. An examination of the relationship between neighborhood income inequality, social resources, and obesity in Los Angeles county. Am J Health Promot. 2011 Nov-Dec;26(2):109-15. https://doi.org/10.4278/ajhp.100326-quan-93
45. Davis SK, Winkleby MA, Farquhar JW. Increasing disparity in knowledge of cardiovascular disease risk factors and risk-reduction strategies by socioeconomic status: implications for policymakers. Am J Prev Med. 1995 Sep-Oct;11(5):318-23.
46. El-Kebbi IM, Bidikian NH, Hneiny L, Nasrallah MP. Epidemiology of type 2 diabetes in the Middle East and North Africa: Challenges and call for action. World J Diabetes. 2021 Sep 15;12(9):1401-25. https://doi.org/10.4239/wjd.v12.i9.1401
47. Mambiya M, Shang M, Wang Y, Li Q, Liu S, Yang L, et al. The Play of Genes and Non-genetic Factors on Type 2 Diabetes. Front Public Health. 2019 Nov 19;7:349. https://doi.org/10.3389/fpubh.2019.00349
48. Howell GE 3rd, Mulligan C, Meek E, Chambers JE. Effect of chronic p,p’-dichlorodiphenyldichloroethylene (DDE) exposure on high fat diet-induced alterations in glucose and lipid metabolism in male C57BL/6H mice. Toxicology. 2015 Feb 3;328:112-22. https://doi.org/10.1016/j.tox.2014.12.017
49. Zong G, Valvi D, Coull B, Göen T, Hu FB, Nielsen F, et al. Persistent organic pollutants and risk of type 2 diabetes: A prospective investigation among middle-aged women in Nurses’ Health Study II. Environ Int. 2018 May;114:334-42. https://doi.org/10.1016/j.envint.2017.12.010
50. Afshin A, Micha R, Khatibzadeh S, Schmidt LA, Mozaffarian D. Dietary policies to reduce non‐communicable diseases. The handbook of global health policy. 2014:175-93. https://doi.org/10.1002/9781118509623.ch9
51. Mroue T, Heras B, Soriano JM, Morales-Suarez-Varela M. Prevalence of Malnutrition among Syrian Refugee Children from Lebanon. Life (Basel). 2023 Feb 6;13(2):453. https://doi.org/10.3390/life13020453
52. Lutfy C, Cookson ST, Talley L, Rochat R. Malnourished children in refugee camps and lack of connection with services after US resettlement. J Immigr Minor Health. 2014 Oct;16(5):1016-22. https://doi.org/10.1007/s10903-013-9796-6
53. Höskuldsdóttir G, Franzén S, Eeg-Olofsson K, Eliasson B. Risk trajectories of complications in over one thousand newly diagnosed individuals with type 2 diabetes. Sci Rep. 2022 Jul 11;12(1):11784. https://doi.org/10.1038/s41598-022-16135-0
54. Abassi MM, Sassi S, El Ati J, Ben Gharbia H, Delpeuch F, Traissac P. Gender inequalities in diet quality and their socioeconomic patterning in a nutrition transition context in the Middle East and North Africa: a cross-sectional study in Tunisia. Nutr J. 2019 Mar 21;18(1):18. https://doi.org/10.1186/s12937-019-0442-6
55. Schnepf RD, Richardson J, editors. Consumers and food price inflation2009: Congressional Research Service, Library of Congress.
56. Mozaffarian D, Afshin A, Benowitz NL, Bittner V, Daniels SR, Franch HA, et al. Population approaches to improve diet, physical activity, and smoking habits: a scientific statement from the American Heart Association. Circulation. 2012 Sep 18;126(12):1514-63. https://doi.org/10.1161/cir.0b013e318260a20b
57. Afshin A, Penalvo J, Del Gobbo L, Kashaf M, Micha R, Morrish K, et al. CVD Prevention Through Policy: a Review of Mass Media, Food/Menu Labeling, Taxation/Subsidies, Built Environment, School Procurement, Worksite Wellness, and Marketing Standards to Improve Diet. Curr Cardiol Rep. 2015 Nov;17(11):98. https://doi.org/10.1007/s11886-015-0658-9