Document Type : Original Article

Authors

1 Department of Biochemistry, Islamic Azad University, Falavarjan Branch, Isfahan, Iran

2 Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

BACKGROUND: Rivaroxaban, a direct Factor Xa inhibitor, primarily acts by disrupting the coagulation cascade. However, it may also influence oxidative stress. This effect likely stems from its ability to reduce thrombin-mediated reactive oxygen species (ROS) production and mitigate inflammation. The major aim of the present investigation was to assess the effects of Rivaroxaban on oxidative stress and antioxidant capacity in patients with heart failure.
METHODS: This study included 39 patients (17 males and 22 females, aged 30–95 years) with Stage B heart failure (HF) who had never previously received Rivaroxaban. Patients were enrolled from Chamran Cardiovascular Hospital in Isfahan after providing written informed consent, approved by the Falavarjan University Ethical Committee (IR.IAU.FALA.REC.1398.029). All patients had structural cardiac abnormalities, including reduced left ventricular ejection fraction (LVEF < 40%) or diastolic dysfunction, but no clinical symptoms of HF. Rivaroxaban (20 mg/day) was administered orally to all patients for two months using a pre–post design.
Blood samples were collected before and after treatment to assess oxidative stress and antioxidant biomarkers, including total antioxidant capacity (TAC), malondialdehyde (MDA), homocysteine (Hcy), and the enzymatic activities of paraoxonase-1 (PON1) and arylesterase. TAC, MDA, and enzyme activities were measured spectrophotometrically, while homocysteine levels were determined using ELISA.
RESULTS: The results showed a significant reduction in MDA levels (P < 0.001), indicating reduced oxidative stress after Rivaroxaban treatment. However, no statistically significant changes were observed in other biomarkers, including homocysteine, arylesterase, paraoxonase, and TAC (P > 0.05).
CONCLUSION: In conclusion, Rivaroxaban appears to effectively reduce oxidative stress, as evidenced by decreased MDA levels.

Keywords

1. Sapna F, Raveena F, Chandio M, Bai K, Sayyar M, Varrassi G, et al. Advancements in Heart Failure Management: A Comprehensive Narrative Review of Emerging Therapies. Cureus. 2023 Oct 4;15(10):e46486. https://doi.org/10.7759/cureus.46486
2. Gottlieb M, Schraft E, O’Brien J, Patel D, Peksa GD. Prevalence of undiagnosed stage B heart failure among emergency department patients. Am J Emerg Med. 2024 Nov;85:153-7. https://doi.org/10.1016/j.ajem.2024.09.026
3. van der Pol A, van Gilst WH, Voors AA, van der Meer P. Treating oxidative stress in heart failure: past, present and future. Eur J Heart Fail. 2019 Apr;21(4):425-35. https://doi.org/10.1002/ejhf.1320
4. Wróbel-Nowicka K, Wojciechowska C, Jacheć W, Zalewska M, Romuk E. The Role of Oxidative Stress and Inflammatory Parameters in Heart Failure. Medicina (Kaunas). 2024 May 2;60(5):760. https://doi.org/10.3390/medicina60050760
5. Kamal FZ, Lefter R, Jaber H, Balmus IM, Ciobica A, Iordache AC. The Role of Potential Oxidative Biomarkers in the Prognosis of Acute Ischemic Stroke and the Exploration of Antioxidants as Possible Preventive and Treatment Options. Int J Mol Sci. 2023 Mar 28;24(7):6389. https://doi.org/10.3390/ijms24076389
6. Tong M, Saito T, Zhai P, Oka SI, Mizushima W, Nakamura M, Ikeda S, Shirakabe A, Sadoshima J. Mitophagy Is Essential for Maintaining Cardiac Function During High Fat Diet-Induced Diabetic Cardiomyopathy. Circ Res. 2019 Apr 26;124(9):1360-71. https://doi.org/10.1161/circresaha.118.314607
7. Anand SS, Bosch J, Eikelboom JW, Connolly SJ, Diaz R, Widimsky P, et al. Rivaroxaban with or without aspirin in patients with stable peripheral or carotid artery disease: an international, randomised, double-blind, placebo-controlled trial. Lancet. 2018 Jan 20;391(10117):219-29. https://doi.org/10.1016/s0140-6736(17)32409-1
8. Horinaka S, Sugawara R, Yonezawa Y, Ishimitsu T. Factor Xa inhibition by rivaroxaban in the trough steady state can significantly reduce thrombin generation. Br J Clin Pharmacol. 2018 Jan;84(1):79-87. https://doi.org/10.1111/bcp.13429
9. Sakuraba K, Krishnamurthy A, Sun J, Zheng X, Xu C, Peng B, et al. Autoantibodies targeting malondialdehyde-modifications in rheumatoid arthritis regulate osteoclasts via inducing glycolysis and lipid biosynthesis. J Autoimmun. 2022 Dec;133:102903. https://doi.org/10.1016/j.jaut.2022.102903
10. Kubitza D, Berkowitz SD, Misselwitz F. Evidence-Based Development and Rationale for Once-Daily Rivaroxaban Dosing Regimens Across Multiple Indications. Clin Appl Thromb Hemost. 2016 Jul;22(5):412-22. https://doi.org/10.1177/1076029616631427
11. Zhang Q, Zhang Z, Zheng H, Qu M, Li S, Yang P, et al. Rivaroxaban in heart failure patients with left ventricular thrombus: A retrospective study. Front Pharmacol. 2022 Oct 7;13:1008031. https://doi.org/10.3389/fphar.2022.1008031
12. Moñux G, Zamorano-León JJ, Marqués P, Sopeña B, García-García JM, Laich de Koller G, et al. FXa inhibition by rivaroxaban modifies mechanisms associated with the pathogenesis of human abdominal aortic aneurysms. Br J Clin Pharmacol. 2017 Dec;83(12):2661-70. https://doi.org/10.1111/bcp.13383
13. Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011 Dec;301(6):H2181-90. https://doi.org/10.1152/ajpheart.00554.2011
14. Ito F, Sono Y, Ito T. Measurement and Clinical Significance of Lipid Peroxidation as a Biomarker of Oxidative Stress: Oxidative Stress in Diabetes, Atherosclerosis, and Chronic Inflammation. Antioxidants (Basel). 2019 Mar 25;8(3):72. https://doi.org/10.3390/antiox8030072
15. Chow SC, Shao J, Wang H, Lokhnygina Y. Sample Size Calculations in Clinical Research (3rd ed.). Chapman and Hall/CRC. 2017 https://doi.org/10.1201/9781315183084
16. Shah AM, Claggett B, Sweitzer NK, Shah SJ, Anand IS, O’Meara E, et al. Cardiac structure and function and prognosis in heart failure with preserved ejection fraction: findings from the echocardiographic study of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) Trial. Circ Heart Fail. 2014 Sep;7(5):740-51. https://doi.org/10.1161/circheartfailure.114.001583
17. Ilyasov IR, Beloborodov VL, Selivanova IA, Terekhov RP. ABTS/PP Decolorization Assay of Antioxidant Capacity Reaction Pathways. Int J Mol Sci. 2020 Feb 8;21(3):1131. https://doi.org/10.3390/ijms21031131
18. Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990;186:407-21. https://doi.org/10.1016/0076-6879(90)86134-h
19. Alam SF, Kumar S, Ganguly P. Measurement of homocysteine: a historical perspective. J Clin Biochem Nutr. 2019 Nov;65(3):171-7. https://doi.org/10.3164/jcbn.19-49
20. Moshtaghie E, Nayeri H, Moshtaghie AA, Asgary S. The effect of homocysteine thiolactone on paraoxonase and aryl esterase activity of human serum purified paraoxonase 1 in vitro experiments. ARYA Atheroscler. 2022 Mar;18(2):1-6. https://doi.org/10.48305/arya.v18i0.2319
21. Bucci T, Del Sole F, Menichelli D, Galardo G, Biccirè FG, Farcomeni A, et al. Efficacy and Safety of Combination Therapy with Low-Dose Rivaroxaban in Patients with Cardiovascular Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Clin Med. 2024 Mar 31;13(7):2033. https://doi.org/10.3390/jcm13072033
22. Panda P, Verma HK, Lakkakula S, Merchant N, Kadir F, Rahman S, et al. Biomarkers of Oxidative Stress Tethered to Cardiovascular Diseases. Oxid Med Cell Longev. 2022 Jun 24;2022:9154295. https://doi.org/10.1155/2022/9154295
23. Daiber A, Hahad O, Andreadou I, Steven S, Daub S, Münzel T. Redox-related biomarkers in human cardiovascular disease - classical footprints and beyond. Redox Biol. 2021 Jun;42:101875. https://doi.org/10.1016/j.redox.2021.101875
24. Gallo G, Volpe M, Savoia C. Endothelial Dysfunction in Hypertension: Current Concepts and Clinical Implications. Front Med (Lausanne). 2022 Jan 20;8:798958. https://doi.org/10.3389/fmed.2021.798958
25. Senoner T, Dichtl W. Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target? Nutrients. 2019 Sep 4;11(9):2090. https://doi.org/10.3390/nu11092090
26. Mackness M, Mackness B. Paraoxonase 1 and atherosclerosis: is the gene or the protein more important? Free Radic Biol Med. 2004 Nov 1;37(9):1317-23. https://doi.org/10.1016/j.freerad biomed.2004.07.034
27. Sirca TB, Mureșan ME, Pallag A, Marian E, Jurca T, Vicaș LG, et al. The Role of Polyphenols in Modulating PON1 Activity Regarding Endothelial Dysfunction and Atherosclerosis. Int J Mol Sci. 2024 Mar 4;25(5):2962. https://doi.org/10.3390/ijms25052962
28. Falco L, Tessitore V, Ciccarelli G, Malvezzi M, D’Andrea A, Imbalzano E, et al. Antioxidant Properties of Oral Antithrombotic Therapies in Atherosclerotic Disease and Atrial Fibrillation. Antioxidants (Basel). 2023 May 30;12(6):1185. https://doi.org/10.3390/antiox12061185
29. Petras M, Tatarkova Z, Kovalska M, Mokra D, Dobrota D, Lehotsky J, et al. Hyperhomocysteinemia as a risk factor for the neuronal system disorders. J Physiol Pharmacol. 2014 Feb;65(1):15-23.
30. Murillo-González FE, Ponce-Ruiz N, Rojas-García AE, Rothenberg SJ, Bernal-Hernández YY, Cerda-Flores RM, et al. PON1 lactonase activity and its association with cardiovascular disease. Clin Chim Acta. 2020 Jan;500:47-53. https://doi.org/10.1016/j.cca.2019.09.016
31. Yilmaz N. Relationship between paraoxonase and homocysteine: crossroads of oxidative diseases. Arch Med Sci. 2012 Feb 29;8(1):138-53. https://doi.org/10.5114/aoms.2012.27294