Document Type : Original Article

Authors

1 Prevention of Cardiovascular Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2 Department of Cardiology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

3 Radiology Department, Shahid Modarres Hospital, Shahis Beheshti University of Medical Sciences, Tehran, Iran

4 Chronic Kidney Disease Research Center (CKDRC), Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran

5 Department of Cardiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

10.48305/arya.2025.43184.3005

Abstract

BACKGROUND: This study aims to investigate the association between Coronary Artery Calcium (CAC) score and epicardial fat thickness (EFT) and pericardial fat thickness as indicators of inflammation in patients with chronic kidney disease (CKD).
METHODS: This cross-sectional study measured patients’ CAC scores using dual-source cardiac CT, quantified with Agatston’s score and dedicated Ca-Scoring software. Epicardial and pericardial fat thicknesses were assessed via echocardiography. 
RESULTS: Thirty-one CKD patients participated in the study, with an average age of 54.45 ± 15.12 years. Of these, 22 were male (70.97%) and 9 were female (29.03%). Fifteen CKD patients (48.39%) had moderate to severe CAC scores. Patients with CKD exhibiting severe coronary calcification were found to be older (P = 0.003). A significant positive correlation was observed between epicardial fat thickness (r = 0.58, P < 0.001) and pericardial fat thickness (r = 0.56, P = 0.001) with CAC score. Multivariable analysis revealed that for each one-unit increase in EFT, the odds of having a moderate to severe CAC score were 2.88 times greater than those of a normal score (OR = 2.88, 95% CI = 1.04–7.96, P = 0.041). Similarly, a one-unit increase in pericardial fat thickness was associated with 1.51 times higher odds of a moderate to severe CAC score compared to a normal score (OR = 1.51, 95% CI = 0.93–2.46, P = 0.093).
CONCLUSION: The insights gained from this study advocate for a holistic approach to assessing cardiac function in patients with coronary calcification. By integrating echocardiographic analysis with traditional risk factor assessment, healthcare providers can gain a more comprehensive understanding of cardiovascular health, ultimately leading to better-targeted therapies to improve CKD patient outcomes.

Keywords

1. Msaad R, Essadik R, Mohtadi K, Meftah H, Lebrazi H, Taki H, et al. Predictors of mortality in hemodialysis patients. Pan Afr Med J. 2019 May 28;33:61. https://doi.org/10.11604/pamj.2019.33.61.18083
2. Zoccali C, Mallamaci F, Adamczak M, de Oliveira RB, Massy ZA, Sarafidis P, et al. Cardiovascular complications in chronic kidney disease: a review from the European Renal and Cardiovascular Medicine Working Group of the European Renal Association. Cardiovasc Res. 2023 Sep 5;119(11):2017-32. https://doi.org/10.1093/cvr/cvad083
3. Carracedo J, Alique M, Vida C, Bodega G, Ceprián N, Morales E, et al. Mechanisms of Cardiovascular Disorders in Patients With Chronic Kidney Disease: A Process Related to Accelerated Senescence. Front Cell Dev Biol. 2020 Mar 20;8:185. https://doi.org/10.3389/fcell.2020.00185
4. Campo S, Lacquaniti A, Trombetta D, Smeriglio A, Monardo P. Immune System Dysfunction and Inflammation in Hemodialysis Patients: Two Sides of the Same Coin. J Clin Med. 2022 Jun 28;11(13):3759. https://doi.org/10.3390/jcm11133759
5. Wang Y, Gao L. Inflammation and Cardiovascular Disease Associated With Hemodialysis for End-Stage Renal Disease. Front Pharmacol. 2022 Feb 10;13:800950. https://doi.org/10.3389/fphar.2022.800950
6. Russa DL, Pellegrino D, Montesanto A, Gigliotti P, Perri A, Russa AL, et al. Oxidative Balance and Inflammation in Hemodialysis Patients: Biomarkers of Cardiovascular Risk? Oxid Med Cell Longev. 2019 Feb 11;2019:8567275. https://doi.org/10.1155/2019/8567275
7. Sasaki K, Shoji T, Kabata D, Shintani A, Okute Y, Tsuchikura S, et al. Oxidative Stress and Inflammation as Predictors of Mortality and Cardiovascular Events in Hemodialysis Patients: The DREAM Cohort. J Atheroscler Thromb. 2021 Mar 1;28(3):249-60. https://doi.org/10.5551/jat.56069
8. D’Marco L, Puchades MJ, Panizo N, Romero-Parra M, Gandía L, Giménez-Civera E, et al. Cardiorenal Fat: A Cardiovascular Risk Factor With Implications in Chronic Kidney Disease. Front Med (Lausanne). 2021 May 25;8:640814. https://doi.org/10.3389/fmed.2021.640814
9. Sheng YN, Zhao DM, Ma QL, Gao Y. [Association between epicardial fat volume and coronary artery calcification in patients with chronic kidney disease]. Zhonghua Xin Xue Guan Bing Za Zhi. 2017 Feb 24;45(2):121-25. https://doi.org/10.3760/cma.j.issn.0253-3758.2017.02.010
10. Turkmen K, Ozer H, Kusztal M. The Relationship of Epicardial Adipose Tissue and Cardiovascular Disease in Chronic Kidney Disease and Hemodialysis Patients. J Clin Med. 2022 Feb 27;11(5):1308. https://doi.org/10.3390/jcm11051308
11. Ribeiro AC, Silva RE, Justino PBI, Santos EC, Gonçalves RV, Novaes RD. Relationship between time-dependent variability in cardiometabolic risk factors and biochemical markers with cytokine and adipokine levels in hemodialysis patients. Cytokine. 2022 Mar;151:155802. https://doi.org/10.1016/j.cyto.2022.155802
12. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003 Nov 18;108(20):2460-6. https://doi.org/10.1161/01.cir.0000099542.57313.c5
13. Goeller M, Achenbach S, Marwan M, Doris MK, Cadet S, Commandeur F, et al. Epicardial adipose tissue density and volume are related to subclinical atherosclerosis, inflammation and major adverse cardiac events in asymptomatic subjects. J Cardiovasc Comput Tomogr. 2018 Jan-Feb;12(1):67-73. https://doi.org/10.1016/j.jcct.2017.11.007
14. Sarin S, Wenger C, Marwaha A, Qureshi A, Go BD, Woomert CA, et al. Clinical significance of epicardial fat measured using cardiac multislice computed tomography. Am J Cardiol. 2008 Sep 15;102(6):767-71. https://doi.org/10.1016/j.amjcard.2008.04.058
15. Bailey CS. Non-cancerous conditions associated with spay/neuter status in the canine. Clin Theriogenol. 2016;8(3):203–6.
16. Matloch Z, Kotulák T, Haluzík M. The role of epicardial adipose tissue in heart disease. Physiol Res. 2016;65(1):23-32. https://doi.org/10.33549/physiolres.933036
17. Corradi D, Maestri R, Callegari S, Pastori P, Goldoni M, Luong TV, et al. The ventricular epicardial fat is related to the myocardial mass in normal, ischemic and hypertrophic hearts. Cardiovasc Pathol. 2004 Nov-Dec;13(6):313-6. https://doi.org/10.1016/j.carpath.2004.08.005
18. Iozzo P. Myocardial, perivascular, and epicardial fat. Diabetes Care. 2011 May;34 Suppl 2(Suppl 2):S371-9. https://doi.org/10.2337/dc11-s250
19. Monti CB, Codari M, De Cecco CN, Secchi F, Sardanelli F, Stillman AE. Novel imaging biomarkers: epicardial adipose tissue evaluation. Br J Radiol. 2020 Sep 1;93(1113):20190770. https://doi.org/10.1259/bjr.20190770
20. Packer M. Packer M. Epicardial Adipose Tissue May Mediate Deleterious Effects of Obesity and Inflammation on the Myocardium. J Am Coll Cardiol. 2018 May 22;71(20):2360-72. https://doi.org/10.1016/j.jacc.2018.03.509
21. Dey D, Nakazato R, Li D, Berman DS. Epicardial and thoracic fat - Noninvasive measurement and clinical implications. Cardiovasc Diagn Ther. 2012 Jun;2(2):85-93. https://doi.org/10.3978/j.issn.2223-3652.2012.04.03
22. Ertaş G, Ekmekçi A, Şahin S, Murat A, Bakhshaliyev N, Erer HB, et al. Epicardial fat thickness assessment by multi-slice computed tomography for predicting cardiac outcomes in patients undergoing transcatheter aortic valve implantation. Cardiovasc J Afr. 2022 May-Jun 23;33(3):108-11. https://doi.org/10.5830/cvja-2021-043
23. Hsu LY, Ali Z, Bagheri H, Huda F, Redd BA, Jones EC. Comparison of CT and Dixon MR Abdominal Adipose Tissue Quantification Using a Unified Computer-Assisted Software Framework. Tomography. 2023 May 20;9(3):1041-51. https://doi.org/10.3390/tomography9030085
24. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373-83. https://doi.org/10.1016/0021-9681(87)90171-8
25. Obisesan OH, Osei AD, Uddin SMI, Dzaye O, Blaha MJ. An Update on Coronary Artery Calcium Interpretation at Chest and Cardiac CT. Radiol Cardiothorac Imaging. 2021 Feb 25;3(1):e200484. https://doi.org/10.1148/ryct.2021200484
26. Tonbul HZ, Turkmen K, Kayıkcıoglu H, Ozbek O, Kayrak M, Biyik Z. Epicardial adipose tissue and coronary artery calcification in diabetic and nondiabetic end-stage renal disease patients. Ren Fail. 2011;33(8):770-5. https://doi.org/10.3109/0886022x.2011.599913
27. Mohanty SK, Veerabhadrappa B, Majhi A, Suchiang K, Dyavaiah M. Age-related disease: Kidneys. InAging 2024 Jan 1 (pp. 91-117). Academic Press.
28. Wang FM, Cainzos-Achirica M, Ballew SH, Coresh J, Folsom AR, Howard CM, et al. Defining Demographic-specific Coronary Artery Calcium Percentiles in the Population Aged ≥75: The ARIC Study and MESA. Circ Cardiovasc Imaging. 2023 Sep;16(9):e015145https://doi.org/10.1161/circim aging.122.015145
29. Pandya V, Rao A, Chaudhary K. Lipid abnormalities in kidney disease and management strategies. World J Nephrol. 2015 Feb 6;4(1):83-91. https://doi.org/10.5527/wjn.v4.i1.83
30. Lovre D, Shah S, Sihota A, Fonseca VA. Managing Diabetes and Cardiovascular Risk in Chronic Kidney Disease Patients. Endocrinol Metab Clin North Am. 2018 Mar;47(1):237-57. https://doi.org/10.1016/j.ecl.2017.10.006
31. Handy CE, Desai CS, Dardari ZA, Al-Mallah MH, Miedema MD, Ouyang P, et al. The Association of Coronary Artery Calcium With Noncardiovascular Disease: The Multi-Ethnic Study of Atherosclerosis. JACC Cardiovasc Imaging. 2016 May;9(5):568-76. https://doi.org/10.1016/j.jcmg.2015.09.020
32. Hojo R, Fukamizu S, Tokioka S, Inagaki D, Kimura T, Takahashi M, et al. The coronary artery calcium score correlates with left atrial low-voltage area: Sex differences. J Cardiovasc Electrophysiol. 2021 Jan;32(1):41-8. https://doi.org/10.1111/jce.14822
33. Russo R, Di Iorio B, Di Lullo L, Russo D. Epicardial adipose tissue: new parameter for cardiovascular risk assessment in high risk populations. J Nephrol. 2018 Dec;31(6):847-53. https://doi.org/10.1007/s40620-018-0491-5
34. Megías MC, Vasco PG, Bouarich H, Aguilera IL, de Arriba-de la Fuente G, Rodríguez-Puyol D. Epicardial fat tissue, coronary arterial calcification and mortality in patients with advanced chronic kidney disease and hemodialysis. Nefrologia (Engl Ed). 2021 Mar-Apr;41(2):174-81. https://doi.org/10.1016/j.nefro.2020.09.005
35. Saritas T, Reinartz SD, Nadal J, Schmoee J, Schmid M, Marwan M, et al. Epicardial fat, cardiovascular risk factors and calcifications in patients with chronic kidney disease. Clin Kidney J. 2019 Apr 8;13(4):571-9. https://doi.org/10.1093/ckj/sfz030
36. Cheng VY. Plugging Epicardial Fat Into a Prediction Algorithm. Circ Cardiovasc Imaging. 2019 Jan;12(1):e008629. https://doi.org/10.1161/circimaging.118.008629
37. Antonopoulos AS, Antoniades C. The role of epicardial adipose tissue in cardiac biology: classic concepts and emerging roles. J Physiol. 2017 Jun 15;595(12):3907-17. https://doi.org/10.1113/jp273049
38. Harada PH, Canziani ME, Lima LM, Kamimura M, Rochitte CE, Lemos MM, et al. Pericardial fat is associated with coronary artery calcification in non-dialysis dependent chronic kidney disease patients. PLoS One. 2014 Dec 5;9(12):e114358. https://doi.org/10.1371/journal.pone.0114358